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El tiempo de supercémputo asignado para el proyecto “Transporte Cuéntico en Solidos
Aperioddicos con y sin Impurezas Aplicando Campo Eléctrico” nos ha permitido publicar dos
articulos en revistas indexadas y una memoria de congreso. Ademas, dos de los alumnos
participantes en el proyecto obtuvieron su grado de Maestria y nos permitié participar en
cuatro congresos internacionales. A continuacion, se resume los avances de la investigacion

Estudiamos el transporte electronico por medio de los métodos de renormalizacion en
espacio real desarrollados previamente para la formula de Kubo-Greenwood en sistema
cuasiperiddicos y aperiédicos, donde el arreglo atbmico sigue la secuencia de Fibonacci
generalizada. Ademas, desarrollamos un nuevo método de renormalizacion unificado para el
inverso de la razén de participacion (IPR) en cadenas de Fibonacci generalizada, con el
objetivo de estudiar la localizacion electronica. Encontramos una ecuacion analitica para el
coeficiente de Lyapunov de una cadena periddica. Nuestros resultados muestran que, si las
redes son cuasiperiddicas, el promedio espectral de la conductividad DC y de la razén de
participacion decaen siguiendo una ley de potencias cuando la longitud de las redes se
incrementa. En cambio, si las redes son aperiddicas este promedio espectral decae
suavemente. También realizamos un analisis detallado del espectro de la conductividad AC
tanto para sistemas cuasiperiodicos como para no-cuasiperiodicos, encontrando zonas de muy
alta conductividad (mas de tres érdenes de magnitud) que superan ampliamente a la de los
sistemas balisticos. En paralelo, se desarrollaron nuevos métodos de renormalizacion para la
matriz de transferencia con el fin de estudiar la transmitancia foténica en multicapas
aperiddicas. Las capas siguen las secuencias de Fibonacci generalizada, Thue Morse
generalizada, doble periodo y Rudin Shapiro. Nuestros resultados muestran un pico de
transmision perfecta en A=XLo para multicapas con simetria de espejo y considerando la
condicion de un cuarto de onda. Se realizé un analisis detallado del ancho de este pico para
disefiar un mejor filtro. Ademas, se vario el angulo de incidencia para las polarizaciones
transversal eléctrica y transversal magnética, encontrando que esta Ultima no destruye el pico
solo lo recorre suavemente. Estos resultados fueron la base del protocolo de investigacion del
alumno Juan Guillermo Munguia Fernandez, que aprobd su examen de candidatura al grado
de doctor en el Posgrado de Ciencias e Ingenieria de Materiales de la UNAM, presentado el
25 de mayo de 2016. También empezamos el estudio de las propiedades dpticas y electronicas
de los nanoalambres ramificados de silicio con y sin impurezas de oxigeno por medio de la
teoria del funcional de la densidad. Los primeros resultados muestran que el ancho de la banda
prohibida de energia (gap) depende fuertemente de la longitud de las ramas, decreciendo
cuando la rama crece. El ancho de este gap depende también del nimero y la posicion de las
ramas, por lo que estamos haciendo un estudio detallado para cuantificar el nUmero, su ancho
y posicion de las ramas con el objetivo de aumentar su adsorcion y disminuir su reflectividad.
Estos resultados fueron la base del protocolo de la alumna Adriana Patricia Gutiérrez



Rodriguez, que se titulé de Maestria por medio del examen general de conocimientos en el
Posgrado en Ciencias e Ingenieria de Materiales de la UNAM.

Estudiamos la termoelectricidad en nanocintas y nanoalambres segmentados dentro del
formalismo de Boltzmann a través del método de renormalizacion mas convolucién en espacio
real desarrollado para la formula de Kubo-Greenwood, considerando los modelos de amarre
fuerte y de Born. Para los nanoalambres periddicos, observamos un maximo de la figura de
mérito termoeléctrica (ZT) en el espacio de temperaturas, como el que se reporta cuando varia
la concentracion de portadores. Este maximo de ZT se mejora si introducimos nanoalambres
periédicamente segmentados y con seccidén transversal inhomogénea. Al considerar
nanoalambres cuasiperiodicos el maximo de ZT es mayor que el de los sistemas periodicos.
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UNAM bajo mi supervision, con el titulo del protocolo de investigacion “Interaccion
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dia 27 de enero de 2017.
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Dado que nuestra investigacion es de indole tedrico la supercomputadora es una
herramienta esencial para llevar a cabo la modelacion y simulacién de las propiedades fisicas
de los sélidos no periddicos con y sin impurezas, debido a que estos no cuentan con espacio
reciproco y los sistemas que consideramos son de aproximadamente 102 atomos, por lo que
nuestros calculos requieren de cuadruple precision. Por lo anterior es de suma importancia la
utilizacion de la supercomputadora.
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Electronic transport and wavefunction localization are two closely related phenomena, but their behavior in truly
macroscopic aperiodic lattices is a non-widely addressed issue. We study in this article the electrical conductivity
of generalized Fibonacci (GF) lattices through the Kubo-Greenwood formula, while the localization of electronic
wavefunction is analyzed by means of the Lyapunov exponent and participation ratio (PR). For periodic chains, an
analytical expression of the Lyapunov exponent is obtained. We have also developed for the first time a real-
space renormalization method to calculate the PR of macroscopic GF lattices described by tight-binding Hamilto-
nians. Moreover, we report a novel unified renormalization method for the Kubo-Greenwood formula applied to
GF chains. For quasiperiodic lattices, the results reveal a power-law decay of the spectral averages for both PR and
DC conductivity when the system length increases. In addition, we present a systematic analysis of the AC con-
ductivity spectra observing truly large resonant peaks in comparison to the ballistic one. The electrical conduc-
tance of GF nanowires is also investigated. Finally, the results suggest that PR could not be proper for the

Keywords:

Kubo-Greenwood formula
Real-space renormalization method
Generalized Fibonacci lattices

analysis of critically localized states.
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1. Introduction

The structural disorder of a solid can profoundly modify the nature
of electronic states. It is well known that they are all extended in period-
ic lattices and exponentially localized in random-disordered systems of
one and two dimensions [1]. However, the degree of localization in
other non-periodic systems is still an unclear subject. In fact, delocalized
electronic states are found in one-dimensional systems with correlated
disorder [2,3] and some of these results have been experimentally con-
firmed [4,5].

Nowadays, the study of electronic states in artificial structures is of
great importance in condensed matter physics, because they introduce
many new physical properties essential for technological applications
of atomic-scale devices. These structures can be multilayers, quantum
wires, rings, or dots, etc. In particular, quasiperiodic and aperiodic sys-
tems become a subject of remarkable interest since the discovery of
quasicrystals [6] and the fabrication of high-quality superlattices includ-
ing quasiperiodic ones [7], whose Raman spectrum has a good agree-
ment with the theory [8]. Much attention has been devoted to the
Fibonacci lattice, because it provides a prototype structure for studying
quasiperiodic systems and possesses critically localized electronic states
[9]. The corresponding energy spectrum is neither absolutely continu-
ous nor pure point, but singular continuous [10].
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There is a generalization of the Fibonacci sequence obtained by the
substitutions A—~A™B" and B— A, where m and n are positive integer
numbers. The symbol A™ represents a string of m A's. The original
Fibonacci sequence is recovered when m=n=1 and generalized ones
with m>1 and n=1 are called precious means, while metallic means
stand for sequences with m=1 and n>1 [11]. Along last two decades,
the electronic, vibrational, and optical properties of generalized
Fibonacci (GF) lattices have been investigated [11-14]. In particular,
real-space renormalization-group methods based on the decimation
technique were developed for calculating the local density of states at
any given site [15] and the average Green's functions [16] of several
macroscopic GF lattices. Moreover, the total density of states and the
electrical conductivity in mixing Fibonacci chains withm=n=1 are in-
vestigated [17], and the alternating current (AC) of transparent states is
also analyzed [18] observing a decreasing oscillatory behavior as oc-
curred in periodic lattices, in contrast to the resonant AC conduction
found at bandgap energies [19].

In this article, we report a detailed analysis of the electrical conduc-
tivity, Lyapunov coefficient, and participation ratio (PR) of GF lattices
with macroscopic length. This analysis was carried out by means of a
real-space renormalization method capable to address truly macroscop-
ic systems without introducing any additional approximations, whose
mathematical formulations are presented in Appendices A, B and C.
We will introduce the GF sequences in section two, and define the local-
ization and transport physical quantities in section three. The results of
both direct current (DC) conductivity and the wavefunction localization
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are presented in section four, while the AC conduction is investigated in
section five. We further discuss the electronic transport and localization
in GF nanowires with a square cross-section in section six. Finally, the
conclusions of this study are given in section seven.

2. Generalized Fibonacci sequences

The Fibonacci chains can be studied in several forms, for exam-
ple, by using two sorts of bonds (bond problem), two kinds of
atoms (site problem) or a combination of both (mixing problem)
[17]. In this paper, we analyze the bond problem, in which two
hoping integrals, t4 and tg, are arranged following the GF sequences
and the nature of atoms are assumed to be the same with a null self-
energy. The GF sequences (S;) can be built by using the following
addition scheme [13,20],

So(m,n) = {B}, Si(m,n) = {A}, (1)
and S;(m,n) =S, (m,n) ®S} ,(m,n),

where [ is the generation index, m and n are positive integers that
define the type (m,n) of GF sequences. For example, S,(2,1) =
{AAB} and S5(2,1) = {AABAABA}. These S;(m,n) can also be obtained
by the substitution rules given by [20,21]

A—A"B" and B—A, )

which may be rewritten by using the substitution matrix (M) as
[22]

(5)-(s) (3 08
(e

m n

A

Matrix M has the following eigenvalues (A ),

‘m]—)\ _n)\ =0 A —mA—n=0
4
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For n=1, Eq. (4) leads to A >1 and |A_| <1, which fulfill the Pisot
condition [22,23].
Moreover, the determinant of M,

m n
' 10
is unimodular if n = 1. Hence, the corresponding sequence is called qua-
siperiodic and possesses Bragg-peak diffraction spectra, because both
the Pisot eigenvalue condition and the unit-determinant requirement
of M are satisfied [24]. Conversely, the GF sequences with n#1 do not
satisfy the Pisot condition neither the unit-determinant requirement,
thus they are not quasiperiodic. Among non-quasiperiodic structures,
the Thue-Morse sequence is another widely studied one, since it accom-
plishes the Pisot condition but has a non-unimodular substitution ma-
trix; in consequence, it is not quasiperiodic neither [25].

The total number of A and B in S;(m,n), denoted by F, (m,n), satisfies
the relation

— (5)

Fy(m,n) = mFy_y (m, n) + nFy_(m,n) (6)

with Fo(m,n) =F;(m,n) = 1. At the limit of infinite length, the ratio of
F, (m,n) for subsequent generations defined as

=1 FH] (mvn)
7(m,m = fim F;(m,n)

)

satisfies the quadratic equation 7> — m7 —n =0, whose positive solu-
tion is
m+vm? +4n

r(m,m) = TR (®)

In fact, the irrational number 7(1,1) = (1 + /5)/2 is referred as the
golden mean,7(2,1) = 1 + v2asthesilver mean,7(3,1) = (3 + V13)/2
as the bronze mean, 7(1,2) =2 as the copper mean, and 7(1,3) = (1 +
V/13)/2 as the nickel mean.

Both substitution and addition methods for the nine GF se-
quences, withm and n=1, 2 or 3,analyzed in this paper are sum-
marized in Table 1. Segments of these GF chains for the bond
problem are illustrated in Fig. 1, where the initial conditions were
So(m,n) ={B} and S;(m,n) ={A}. Notice that for a given generation
I, a GF chain of type (3,3) has more atoms than a standard Fibonacci
chain with (1,1).

In the next section, we describe the model used for the study of elec-
tronic transport and localization of wavefunctions in GF chains defined
in this section.

3. Modeling electronic transport and localization

In order to isolate the quasicrystalline effects on the physical proper-
ties of GF chains, let us consider a single-band tight-binding Hamiltoni-
an (H) given by

H= 2 ti;{li><jl+ j><il}, 9)

<i,j>

where |j) represents the Wannier function of atom j with null self-ener-
gy and t; j is the hopping integral between nearest-neighbor sites i and j,
indicated by (i,j), which may be t, or tp arranged according to the GF
sequences.

The density of states (DOS) can be calculated by means of the retard-
ed single-electron Green's function (G) [26],

DOS(E) = — %”lir(?_ ImTr(G(E + i), (10)

where 7 is the imaginary part of energy (E) and the Green's function is
determined by the Dyson equation given by (E—H)G=1.
The electronic wavefunction (|y> = >_ ¢j|j>) satisfies the stationary
J

Schrédinger's equation, which for both periodic or non-periodic chains
described by Hamiltonian (Eq. (9)) can be written as

Cj1 =T;Cj, (1)
where

7. (E/tijsn —tij-1/tjja
I 1 0

and C; = (ij1>
i

are respectively the transfer matrix and amplitude vector of the
wavefunction. The amplitude vectors of atoms at the begin and end of
the chain are related by the product of transfer matrices,

(12)

= Nt T T2
TNT(O)T, =Ty [ T1 T; | Ts = ( ) (13)
j=2 T21 T2
where N is the number of atoms in the chain of generation I,
N—1
T(l) = ]‘[2 Tj, (14)
Jj=
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Table 1
Substitution and addition rules for the GF sequences of type (m, n).
n=1 n=2 n=3
m=1 A—-AB & B—A A—ABB & B—A A—ABBB & B—A
SI=S51-1®S,-2 SI=51-1©2S5 > SI=51-1®35->
m=2 A—AAB & B-A A—AABB & B—A A—AABBB & B—A
S1=25_10S1_» S$1=25_1025_» S$1=25_1©3S,_»
m=3 A—AAAB & B—-A A—AAABB & B—A A—AAABBB & B—A
S1=35-18S1—> S1=385-192S5_> S1=35_19©35_»

and the transfer matrices that connect the system to the semi-infinite
periodic leads with null self-energies and hopping integrals t are

E/t —t/t
T, — < /]1.2 61.2)

and TN: <E1/t _tN*LN/t). (15)

0

From Eq. (13), the transmittance (T) of a linear chain is given by [27]

2
T(E) = = (9 (16)

_ (T—mn)E)? a1 B\
T Tty + (T2 +711)°( 1 e

The electrical conductance (g) can be calculated through the
Landauer formula [28]

2
8(E) = 25 T(E) = T (E) (17)

where go=2¢%/h is the quantum of conductance.

The localization of wavefunction can be analyzed by looking at the
Lyapunov coefficient (7y) and the participation ratio (PR), which are re-
spectively defined by [27]

1
VE) = yIny/r3y + 73 + 73, + 73,

N -1
and PR(E) = (,Zl |cj(E)|4> .

In general, the inverse of vy is interpreted as the localization length if
the wavefunction is exponentially localized. On the other hand, PR
counts the number of atoms that contributes to a normalized
wavefunction, e.g., PR=N for a fully extended state and PR=1 for a
wavefunction with amplitude only at a single atom.

Within the linear response theory, the electrical conductivity can be
calculated by means of the Kubo-Greenwood formula [29],

2 o —
o o.T)= ézin?z I dE = {ﬁ((i e : (19)

x Tr[p ImG" (E + he) p ImG ™ (E)]

where Q is the system volume,
p="HX= Y {tjjnli><j+1|~t;1lj><j— 1]} is the projec-
tion of the momentum operator along the applied electrical field,
G"(E)=G(E+in) is the retarded one-particle Green's function, and

f(E)={1+ exp[(E—pu)/ksT]}~ " is the Fermi-Dirac distribution with
the chemical potential pand temperature T.

For a periodic linear chain of N atoms with null self-energies and
hopping integral t, connected to two semi-infinite periodic leads with
the same t, the AC conductivity at zero temperature has an analytical so-
lution of [30]

8e?t’a %
P 0.0) = s {1—(27) }
(20)
x ¢ 1—cos (V1o

260/1—(u/2t)?

when —2 |t|<u<2 |t|. In particular, its DC conductivity for ®— 0 is

2
0p=0p(1,0,0) = L (N—-1). 1)

It is easy to verify that op(p,®,0)<0p for —2 |t|<u<2|t|.
Analytical solutions can also be found for the density of states

—1
DOS(E) = N(mV/4t>—E?*) ', the participation ratio PR(E) =N and the
Lyapunov coefficient

1 E2 N-2
Yo(E) =3 1n{2+t2 f(N—1) +22f(i)” (22)
i=0
where
/2 ! 2 J=
RS (=D)J=DE
f)= l; l!(J—Zl)!<t2 2) . (23)

However, there are no general analytical solutions for these physical
quantities in long GF chains and they are calculated in this article by
means of the real-space renormalization method, whose procedure
can be illustrated for the case of transfer matrix, by using the method
of addition given by Eq. (1) and by taking the advantage of the associa-
tivity of matrix products. For example, the transfer matrix of a (m,n)-
type GF chain of generation [ can be calculated by

T() = [T(1=2)"Tu[T(I=1)]", (24)

where the middle connecting matrix (Tj,) is given by

Ty = <E/1tA —t,g/tA> (25)

being ty;=t, if lis odd and ty, = tif l is even. In other words, the transfer
matrix of generation [ can be obtained just by multiplying n times the
transfer matrix of generation [ — 2 and m times the transfer matrix of
generation [ — 1. Nevertheless, the formulation of this renormalization
procedure for the DOS and PR is considerably more complex, whose
mathematical details are respectively given in Appendices A and B. It
is worth mentioning that once these new renormalization methods
are developed, the computing time is proportional to the generation
number [, i.e., it is proportional to the logarithm of the system length.

In the next section, we present the results of DOS, DC conductivity,
Lyapunov coefficient, and participation ratio for the nine GF chains of
type (m,n) with m and n equal to 1, 2, or 3.

4. Localization and DC conductivity
In order to study macroscopic GF chains with lengths of 10% atoms,

different generation numbers () are chosen for each type of GF chains,
as specified in Table 2.
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Fig. 1. Segments of generalized Fibonacci chains of type (m,n) defined by Eq. (2) for the bond problem with m and n equal to 1, 2, or 3. Two hopping strengths of bonds, t4 and tg, are

indicated.

For the sake of simplicity, a uniform bond length (a) is taken and
the aperiodicity is introduced through the order of hopping integrals
ta and tg. Two semi-infinite periodic leads with null self-energy and
hopping integral t are connected to the ends of all analyzed GF
chains. In these leads, a phase difference of e!® between the
wavefunction amplitudes of nearest-neighbor sites is considered,
where 6 satisfies the dispersion relation E=2tcos#. In Fig. 2(a)-(1),
spectra of the density of states (DOS), zero-temperature DC conduc-
tivity [o=o0(,0,0)], Lyapunov coefficient (y) and participation ratio
(PR) are plotted as functions of the chemical potential (u) for the
three GF chains with n=1, null self-energies, hopping integrals of
ta=0.8t and tz=t. The lengths of these chains are given in Table 2.
The used imaginary part of the energy is n=10""|t| for DOS in
Fig. 2(a-c), n=10"13|t| for their magnifications in Fig. 2(a’-c’),
and n=10"'3|¢| for o in Fig. 2(d-f). Grids of 400,000 and of
1,594,324 chemical potentials are respectively used for plotting
Fig. 2(a-i) and (j-1).

Notice that all spectra of DOS, o, v, and PR show the same band-
gap structure for each type of GF chains. In particular, the inverse of
Lyapunov coefficient (y~') of Fig. 2(g-i) reveals localization lengths
very close to those of the periodic chain (7yp !). Such behavior is
confirmed by the almost ballistic DC conductivity (op) in each
minibands, in contrast to a general small PR values. In fact, they are
even smaller when t4 diminishes, contrary to practically unchanged
o and y~ ! values in each miniband whose bandwidth decreases
with t,4. Magnifications of DOS spectra around p= 0 are further pre-
sented in Fig. 2(a’-c’) and they confirm the fractal nature of these
spectra from quasiperiodic chains [9].

It is worth mentioning that the DOS spectrum of Fig. 2(b) for the
silver mean is very close to the band structure reported in Ref. [31],
in which the total band width is slightly larger than ours since their
hopping integrals were ty, =t and tz=0.8t. In addition, the silver
mean sequence of Ref. [31] is an isomer of ours, i.e., instead of
A— AAB they used a substitution rule of A— ABA. In fact, the three iso-
mers of the silver mean have almost the same DOS spectra. However,
the localization nature of their states could be very different. For

example, there are analytical solutions for the transmittance (T) at
E=0 and they are

4(yP + y7P)72, for isomer A—AAB
44 + 72, for isomer A—ABA » (26)
4(yP + y7P)72, for isomer A—BAA

T(E=0,l) =

where y=t/ts, p=[1—(—1)"]/2 and [ is the generation number.
Notice that for the case A—ABA and y#1, T(E=0,l) -0 when [ — o,
But for the isomers A— AAB and A— BAA, T(E=0,l) =1 when [ is an
even number, regardless the value of y. Hence, we have always
transparent states at E=0 in these two isomers with even genera-
tion numbers.

In Figs. 3 and 4, the density of states (DOS), zero-temperature DC
conductivity (o), Lyapunov coefficient (7y) and participation ratio (PR)
as functions of the chemical potential (u) are plotted for the GF chains
with n=2 and n= 3, respectively. The parameters for numerical calcu-
lations are the same as in Fig. 2, except that the lengths of these chains
are given in Table 2.

Notice that in Fig. 3(d-f) the DC conductivity around pt=0 is almost
0p, despite of the minimum DOS at the same region observed in Fig. 3(a-
c). In Fig. 3(a’-c’), magnifications of DOS around p= 0 show oscillating
behaviors, in contrast to the fractal one observed in Fig. 2(a’-c’) for qua-
siperiodic chains.

Table 2
Number of atoms in (m,n)-type GF chains of generation .
N n=1 n=2 n=3
m=1 433,494,438 forl =42 357,913,942 forl =29 315,732,482 for | =24

m=2
m=3

318,281,040 for | = 23
239,244,623 for I = 17

268,377,089 for | = 20
253,841,390 for I = 16

581,130,734 for I = 19
187,869,862 for | = 15
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Fig. 2. Density of states (DOS), DC conductivity (0), Lyapunov coefficient (-y) and participation ratio (PR) as functions of the chemical potential (u) for three generalized Fibonacci chains

with n=1, null self-energies, hopping integrals of t,=0.8t and tz=t.

Contrast to Fig. 3, the high-conductivity zones in Fig. 4(d-f) are lo-
cated outside the central region, correspondingly again to small values
of DOS and an oscillating behavior as shown in Fig. 4(a’-c’). Note also
that in Figs. 3 and 4, the DC conductivity (d-f), Lyapunov (g-i) and PR

(j-1) spectra possess almost the same band structure with their high-
value zones located at the same energy regions. A further analysis of
PR for n=2 and n= 3 reveals their practical constant values when the
hopping integral t, decreases, contrary to the decay behavior in PR

m=1 m= m=3
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Fig. 3. Density of states (DOS), DC conductivity (o), Lyapunov coefficient (y) and participation ratio (PR) as functions of the chemical potential (1) for three generalized Fibonacci chains

with n=2, null self-energies, hopping integrals of t,=0.8¢t and tz=t.
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spectra of Fig. 2. This fact confirms the presence of almost extended
states around =0 in the (1,2) copper-mean lattice reported in refer-
ence [16].

In order to analyze the global behavior of DC conductivity (o) and
participation ratio (PR) spectra, we introduce the spectral averages of
o and of PR defined as

[ _owposidu
DOS(w)dp
R (27)
PR(u)DOS()du
and (PR) = ===

DOS(u)dp

J —w

The results of {0} as functions of the system length (N) are shown in
Fig. 5(a-i) for the nine GF chains of Fig. 1 with hopping integrals t4 =t
(dark yellow circles), t4 = 0.99tp (red hexagons), t4 =0.95 g (blue pen-
tagons), ty = 0.9t (orange down triangles), t4 = 0.85tz (green squares)
and t, = 0.8 t3 (magenta up triangles). The imaginary part of the energy
wasn=10"13|t|forcandn=10""|¢| for DOS. Observe that when the
system length grows, (o) is a constant for the periodic case and it decays
following a power law for quasiperiodic systems with n=1 and it is
truly archived when the system size is large enough. For other six GF
systems that do not fulfill the Pisot quasiperiodic criteria, the average
conductivity decay more slowly than the quasiperiodic systems, neither
a constant as in periodic ones.

In Fig. 6, the spectral average of participation ratio ({PR)) is plotted as
functions of the number of atoms (N) in the nine GF chains of Fig. 1. The
numerical calculations of (PR) were carried out by using a new
renormalization method developed for the participation ratio of GF
chains and presented in Appendix B. The parameters used in these cal-
culations are the same as in Fig. 5. Observe that the (PR) results confirm
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the power-law and sub-power-law behaviors of (o), respectively for
quasiperiodic and non-quasiperiodic systems, obtained from the
Kubo-Greenwood formula.

In order to perform an analytical and comparative study of PR at u=
0 for (1,2)- and (2,1)-type GF chains, let us introduce the notation
PR(m,n,l) for a (m,n)-type GF chain of generation [ evaluated at u=0,
where the transfer matrices of Eq. (12) can be

)@ )e (0 9)

with y=ta/tg. Hence, the normalized PR for a (2,1)-type GF chain of
generation [ =2k + 1 with N, atoms is given by

(28)

w2

PR(2,1,2k + 1) = L=k -,
szj:,k/\j(l))(‘”

(29)

where A(2k+1)=2A(2k) + A(2k — 1) —26; 0 and A_(I) = 3[3—(—1)".
At the limit of y—0 and [— «, we have

llim PR(2,1,2k+1) = llimA*T"(l) =0. (30)
pary ’
In contrast, the (1,2)-type GF chain has
2 212
pR(1,2,1) = 10102 +8o(D) + 01(1) 1°] (31)

N[O 1 () y=*+6o(l) + 01 (1) ¥4’

whose coefficients ©_1,8p,and 0, are given in Table 3.

m=1 m=2 m=3
200 ( )uza ........ e  AARRRRRR" o (b) ............. T e ()oe' ......... e e

= a)= [(a) i - 026 F &) p! _S:- C g‘U-E’_fc') 1
2 ol ] s | s
(7'; & 1 02 vos0z7e 10060277 o ] =0 0898407 _-1:0898406
I _ I [ . ]
o Olhllk“’ :‘/'"””"}“l““ :/. h ."I‘I:”'I///"i ....‘::*:1“1{”“.:
. 1.0 [ (d)

= i

= o5}

b L

0.0 prr+++H

- 1.0 :-(g)
> 3
I 05} ’

= 0.0fwnell

z 10p0

e

7 05}

> oob HERIL "

-2 -1 0 -2 -1 0
Wit Wit Wit

Fig. 4. Density of states (DOS), DC conductivity (o), Lyapunov coefficient () and participation ratio (PR) as functions of the chemical potential (u) for three generalized Fibonacci chains

with n=3, null self-energies, hopping integrals of t,=0.8¢t and tz=t.
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Fig. 5. Spectral average of DC conductivity ({0)) versus the number of atoms (N) for the nine generalized Fibonacci chains illustrated in Fig. 1 with hopping integrals t, = tg (dark yellow
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up triangles).

At the limit of y—0 and |-, Eq. (31) leads to

0_1()

1

2Nl*2 =+ N173$1 _ 3

= lim 3

o

lim PR(1,2,]) = lllTl
|00 I>e
x-0

(32)
1

because Ny=N;_;+2N;_,—2 and llim(N,+1 /N|) = 2. The analytical re-

sults of Egs. (30) and (32) confirm the numerical ones shown in Figs. 2
and 3.
5. AC conductivity

As observed in Figs. 2, 3 and 4, there are many peaks in DC con-
ductivity (o) spectra. If we choose a chemical potential (u) located
between two successive peaks and an external alternating electrical

field with 4 equal to the difference between their energies, a reso-
nant AC electronic transport is registered in segmented [32] and
branched nanowires [19]. In this section, we analyze such transport
in GF chains. Fig. 7 shows AC conductivity spectra in color scale ver-
sus the chemical potential (1) and the electrical field frequency ()
for GF chains with t4,=0.8¢t, tg=t (a) m=1,n=1 and [ = 14; (b)
m=2,n=2and [=7; (c) m=3,n=3 and [=5. The calculations
were performed by using an imaginary part of energy 1=10""[¢|
and these GF chains are connected to two semi-infinite periodic
leads with hopping integrals of t.

Observe in Fig. 7(a) a band structure at low frequency limit similar
to that of Fig. 2(d). For several frequencies, red zones with an AC con-
ductivity larger than the ballistic one op(t, ®,0) of periodic chain
given by Eq. (20) can be found. For example, in Fig. 7(a) there is a reso-
nant peak of o (i, ®,0) =1.7550p (red bar) at hw =0.06123246|t | for
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up triangles).

0.11738557|t|<u1<0.17861803|t |, whose conductivity quickly decays
with the diminution or the increase of frequency. Close to this red bar,
there is another resonant peak of o (1, ®,0) =0.3840p (green bar) at
ho=0.06745621|t| for 0.11400161|t|<u<0.18145782|t|. The first
one is originated by an interband excitation between two high DC

Table 3 )
Coefficients 6; of term y ' in Eq. (31) for (1,2)-type GF chains.
m=1,n=2 leven lodd
0_1(l) 2Ni—2—N;—3—1 2N;_—N;_3+1
6o(1) Ni—;1—1 Ni—1—2
() Ni—3 Ni—3—1

conduction states at E=0.11738557|t| and E=0.17861803|¢| just
located at the borders of a bandgap, while the second one is due to
third neighbor peaks of high DC conductions located at E=
0.11400161|t| and E=0.18145782|t|. In fact, there are resonant
AC conductions when A is equal to the energy difference corre-
sponding to DC conductivity peaks separated by an even number of
peaks in the DC conductivity spectrum, as shown in Fig. 3 of Ref.
[19]. Furthermore, notice in Fig. 7(b) and (c) the presence of color
zones with AC conductivity 0.20p<0 (14, ®,0) £0.9 0p, caused by reso-
nances between rounded peaks shown in Figs. 3(b’) and 4(c’) sepa-
rated by an energy of the order of |t|/N, in contrast to sharp peaks in
Fig. 2(a’) leading to well defined resonant frequencies in Fig. 7(a). In
general, high resonant AC conductivities have been found at the ex-
tremes of bands.
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In order to compare the global resonant AC conduction capability in
different GF chains, we introduce a spectral average conductivity de-
fined as

1 Npol
<o(1,®,0)> = N1 g o(u;,0;,0), (33)

where Ny is the total number of peaks in the DC conductivity
spectrum, 1= (Ej+1 +E;)/2 and ;= (E;j 1 1 — Ej)/h are respectively the
central energy and the resonant frequency of two successive DC con-
ductivity peaks with energies of E; and E;_, 1. Fig. 8 show <o (1, ®,0)>
(open circles) versus the number of atoms (N) in nine GF chains,
where the error bars illustrate the maximum and minimum values of
AC conductivities in each generation (). Observe that (o (1, ®,0)) grows
with the number of atoms and the maximum AC conductivity can reach
to 10" times the ballistic DC conductivity (0p) for non-quasiperiodic GF
chains of 10° atoms. In fact, the zero-temperature ballistic AC conductiv-
ity op(, ®,0) of periodic chains is bounded by op. Overall, the truly high
AC conductivities were obtained from the resonance of very sharp DC
conductivity peaks.

6. Generalized Fibonacci nanowires

The electronic transport in aperiodic nanowires with finite cross-
section can be studied by using the renormalization plus convolution
method for the Kubo-Greenwood formula and its electrical conductivity
(0) is expressed as [30]

oo, =AY ol Es,0,T), (34
QB

where o' is the electrical conductivity of the parallel subsystem, Q, and
E; are respectively the volume and the eigenenergies of the
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Fig. 8. Spectral averages of zero-temperature AC conductivity (0 (i ®,0)) (open circles) versus the number of atoms (N) for nine generalized Fibonacci chains of type (m,n), where the

error bars indicate the maximum and minimum AC conductivity values.
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Fig. 9. Sketch of a segment of a nanowire with a periodic cross section of 9x 9 atoms, whose hopping integrals t4 and tz along the longitudinal direction follow the copper-mean sequence.

perpendicular subsystem. The electrical conductance is written as
g(uo,T)=0 (1L, T)Q, /0, where Q, is the length of the nanowire. For
example, a nanowire with a periodic cross section of 9x9 atoms is
shown in Fig. 9, whose hopping integrals t4 and tz along the longitudinal
direction of nanowire are ordered following the copper-mean sequence
withm=1and n=2.

The zero-temperature DC conductance (g) as a function of the chem-
ical potential (u) is presented in Fig. 10 for nine GF nanowires with cross
sections of 9 x 9 atoms (see Fig. 9), whose longitudinal arrangements of
hopping integrals follow the sequences shown in Fig. 1. The lengths of
these nanowires are specified in Table 2 and the Hamiltonian parame-
ters are t, =0.8t, tg="t and null self-energies. The imaginary part of
the energy is 7=10""3 |t | and Fig. 10 are plotted by using a grid of

120,000 chemical potentials. The conductance g spectra, normalized
by the quantum of conductance go=2e?/h, of GF nanowires are com-
pared to that of a periodic nanowire with the same cross section (light
grey lines). Observe its quantized conductance, in which the step height
in unity of go at +(| Eg|+2 | t|) is the degeneracy of Eg. In particular,
the maximum step height is 9g, located at = 42 |t|, since the cross
section is of 9 x 9 atoms. Moreover, the integral [~ .g(u, 0,0)du of this
stepped spectrum is 324gg|t|, because each of the 81 ballistic
conducting channels provides a constant area of 4gq|t| wherever it is
placed. When the arrangement of hopping integrals follows a quasiperi-
odic sequence along the longitudinal direction, the conductance is sig-
nificantly smaller than the periodic case. In general, the non-
quasiperiodic nanowires with n>1 have larger electrical conductance
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Fig. 10. Zero-temperature electrical conductance (g) versus the chemical potential (i) for nine GF nanowires of type (m,n) with cross sections of 9x9 atoms, t, = 0.8t, tg=t, null self-
energies, whose longitudinal arrangements of hopping integrals follow the sequences of Fig. 1. These spectra are compared to that of a periodic nanowire with the same cross section
(light gray lines). Insets: Corresponding conductance spectra for t4/tz=0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.
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Fig. A1. Schematic representation of the two-stage renormalization procedure for generalized Fibonacci chains of type (m,n).

than those of quasiperiodic ones with n=1, in consistence with the sin-
gle-channel spectral-average results of Fig. 5. In fact, they have large in-
tervals of pwith g(1,0,0)>0, in contrast to the almost zero minimum
value of g over whole spectra for quasiperiodic nanowires, which
could be related to the eigenvalue spectra supported on Cantor sets of
Lebesgue measure zero for quasiperiodic chains with site disorder
[33]. Finally, the insets of Fig. 10 show the evolution of electrical conduc-
tance spectra when the bond disorder amplitude of GF nanowires
grows. Observe the rapid vanish of conductance spectra of quasiperiodic
nanowires in comparison to the non-quasiperiodic ones.

7. Conclusions

To quantify the localization of wavefunctions in macroscopic gener-
alized Fibonacci (GF) systems, we have developed a new real-space
renormalization method for the participation ratio (PR). Also, we have
extended the renormalization method previously developed for the
Kubo-Greenwood formula in Fibonacci lattices [30] with n=m=1 to
all (m,n)-type GF ones. In general, these renormalization methods
have the advantage of being computationally efficient without intro-
ducing additional approximations and representing a useful alternative
for the study of non-periodic systems, where the reciprocal space is ab-
sent or useless.

The PR has been one of the most used quantities for the study of
wavefunction localization in disordered systems and the results of this
article reveal its deficiency in quasiperiodic lattices. In particular, we
found a transparent state at =0 in (2,1)-type GF chains for any even
number of generation [34] and y = t4/tg>0. However, the correspond-
ing PR has a limiting value of zero, as demonstrated in Eq. (30). In
other words, an extremely localized electronic state with almost zero
PR could possess a ballistic transport. In general, the results confirm
the close relation, with the possible exception of critically localized
states [9], between the wavefunction localization and the electronic
transport at zero temperature. For example, the close resemblance be-
tween DC conductivity spectra and Lyapunov exponent ones. In partic-
ular, they are self-similar for the GF chains with n=1, in accordance to

Table A1
Significance of symbols in Eq. (A.2).
Stage a [6) € 5 A 13 e
First L L F j—1 j k—1 1
R R k—2
Second F L R m 1 k n

their purely singular continuous spectra established for the site problem
[33]. This fact leads to a power-law decay of the spectral averages of
both DC conductivity and PR when the number of atoms increases. In
contrast, GF chains with n=2 and n =3 present zones with high-con-
duction oscillating behavior, which gives rise a slow decay of these spec-
tral averages. In addition, we found an analytical expression of
Lyapunov exponent for periodic lattices.

Finally, we report the first global analysis of AC conduction over en-
tire spectra of GF chains. The results show extremely high resonant AC
conductivity peaks in comparison to the ballistic AC one, whose average
value grows faster in non-quasiperiodic systems than quasiperiodic
ones. In general, partially localized electronic states could favor the in-
teraction with external oscillating electric fields through local electric
dipoles, inducing a larger AC response than a homogeneous charge dis-
tribution in periodic systems. Hence, the spatial localization of states de-
termines their resonance intensity via the Fermi's golden rule, from
which the Kubo-Greenwood formula can be obtained [26]. This study
of the correlation between wavefunction localization and electronic
transport can be extended to multidimensional systems, as partially
done in Section VI for the DC conductivity of GF nanowires by using
the convolution theorem.
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Appendix A. Renormalization formulas for the density of states
For a generalized Fibonacci (GF) chain of type (m,n) with two kinds
of bonds, t4 and tg, the density of states (DOS) of generation [ evaluated

atenergy E in terms of the Green's function (G) can be written as in Ref.
[30],

DOS(E,l) = —% lim mY- )G ;(2)
n-0" '

_ ,%nli%q Im{AF(I, 1)Goi(2) + Br (I, 1)Grr(2)
CH1)Gr(2) + De(l,1)]

where z=E +in), N(I) is the total number of atoms in a GF chain of gen-
eration [, and the coefficients A, B, Cand D are iteratively calculated by
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means of a two-stage renormalization procedure, as schematically sum-
marized in Fig. A1, through

Ak, ) = Ay (k.5) +
+By(k,6)— u+%<m%m
Ba(k, N) = By(€, &) + &% (k. M) Ae(
+B[;(k 0)—1] 4 ¢y (k, N)Ce(
ANC

R A2
Calls ) =k NGy 5) + Oak, N Cs(6,8)° (A2)
K

™
=
=
z
I
m
=~
=
+

tﬁ(k 5)/[2 ER(
TB€.0)
Er(kA) = Eo(6, )+ (6, )/ [z—Ex(k. &) (A3)
B 0]
ta(k,N) = ta(k, 6)ts(6,£)) - Ex(k.6)
R

and the significance of «, 3,€,8,\,§ and ¢ are given in Table A1, where in
each row the value of « determines the meaning of the subsequent
parameters.

For a GF chain of generation k, the renormalization procedure con-
sists of using the same Egs. (A.2)-(A.3) and following the steps: (1) it-
eratively calculating the coefficients A (k —1,j), B.(k — 1,j), C.(k—1,j)
and D;(k—1,j) forj=2, 3,-, m; (2) iteratively computing Ag(k —
2,j), Br(k—2,j), Cr(k—2,j) and Dg(k —2,j) forj=2, 3,--, n; and (3)
using the results of left- and right-segment renormalizations to calcu-
late Ar(k, 1), Be(k, 1), Ce(k,1) and Dg(k, 1) of generation k. This calculation
should be repeated fork=2, 3, -, linorder to finally determine the
DOS of a GF chain of type (m,n) and generation L

The initial conditions for Eqs. (A.2)-(A.3) are t¢(0,1) )
BF(O,l):l, CF(O,l):DF(O,l):O, EL(O,l):ER(O,l):O, Ap(l,l)
Br(1,1)=1, C(1,1)=Dg(1,1)=0, t(1,1)=t4, and E;(1,1)=Ex(1,1)=0.

When the system is connected to two periodic leads, the Green's
functions at its extreme atoms are given by

=tp, Ar(0,1

L
Gi(z) = {Z—EL(L 1)—5113(’,)_21255 ()l’)
P

) 2 -1 (A4)
z—Eg(L,1)—E5()—23(1)/ [z—E,’S(l’)} ’
/ 2!

Grr(2) = {Z—ER(I,l)—Ef,(l )_z—PE(,’S()l’) } N

B £2(1,1) (A=)
z—Ey (1, 1)—ER () —2(1)/ {z—E,L,(l’)] ’
and
tr(l,1)Grr(2)

Gir(2) = : , A6

LR(2) z—EL(l,1)—55(1’)—r,2,(1’)/[z—E},(l’)] (A6)

where ['is the generation number of these periodic leads built following
the GF renormalization procedure withm=n=1and t, = t=t, whose
effective self-energies and hopping-integrals are Ep(I")=Eh(I'—
1)+3(I'—=1)yp, ES(I)=EB(I'=2)+t3(I'=2)yp, and tp(I') =tp(I'=1) tp(I'~
2)yp, being yp=[z—Ef(I'=1)—Ep(I'=2)] .

In order to illustrate the procedure for obtaining the renormalization
formulas, we may take the middle state of Fig. A1 as the initial system,

whose DOS can be written from Eq. (A.1) as

N(I—1
ZT 1( )G]~](Z)

_thlr(?* Im +Z] mN(I— 1>G i(2)

DOS(E, ) =

~Gec(2)

(A7)

A(l,m)Gr1(z) + Bi(I,m)Gec(2) ]
1 "rCL(I m)GLc(Z) + DL(I,m)+
= ——lim Im AR(l n)Gcc( )+BR(l n)GR,R(Z)
-0t +Cr(l,M)Ger(2)
+DR(I n) Gc_c( )

where the Green's function elements satisfy the Dyson's equation given
by

Z—E,_(l,m) —t,_(l,m) 0
(—tL(l,m) 2—Ec(L1)  —tr(l n))

0 —tr(l,n) z—Eg(l,n)
(A8)
GLi(z) Gie(z) Gir(2) 100
Ger(2) Gee(z) Gegr(2) 010
Grr(z) Grcl(z) Grr(2) 0 01

In other words,

tr(l,1)

GC.X (Z) = 6CVX tL(L m> GL,X (Z) E (l 1)

Z=Ec(1) " z—Ec(L 1)

Grx(2), (A.9)

where X=1L,C, or R, and Ec(l,1) = Eg(l,m) + E;(l,n). Taking the advan-
tage of being the Green's function a symmetric matrix derived from a
symmetric Hamiltonian, Eq. (A.9) for X= C can be rewritten by using
the same equation for X=L and X=R as

[z—Ec(1.1)] 7" + 041, 1)Gy1(2) + &%(L, 1)Gr(2)
+ 29F(l~ l)qu(lv 1)GL,R(Z)'

Gee(2) =
(A.10)

Substituting Eqs. (A.9)-(A.10) into Eq.(A.7), one obtains

DOS(E,l) = —% liron Im{AL(I, )G (2)
n-0" '

+DL(1, m) +DR(l,Tl) +BR(I n)GRR( )
+Q@WFNJWH@+¢N1WM®
+Cr(L,n) [0, 1)GLr(2) + 5 (1, 1)Grr(2)
+[Br(l,m) + Ag(l, n)—l][ﬂ (L1)Gri(z)
+¢3 (1, 1)Grr(z) + 205 (1. 1)d5 (1. 1)Grr(2)
+Hz—Ec(L, 1)) 7]},

(A11)

which leads to Eq. (A.2). On the other hand, substituting Egs. (A.9) into
Eq. (A.8), it becomes to

z—E (1,1
( —tr(l, 1)

(& &)~ 9)

—tr(l,1) >X
z—Eg(l, 1) a2
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where the renormalized hopping integral tz(l,1) and self-energies,
E;(I,1) and Eg(l, 1), are given in Eq. (A.3).

Appendix B. Renormalization formulas for the participation ratio

Since the single-electron wavefunction (|%)) can be written as a lin-
ear combination of the Wannier's function (|j)) of atomj, [¥) = >_ jcjlj),
the participation ratio (PR) for a non-normalized wavefunction is given
by

(X))’
ijlfﬂ4

and its denominator may be expressed in term of the wavefunction
amplitudes at extreme sites, ¢; and cg, as

PR = (B.1)

Sjlel* =1t Dleul* + Le(l 1) [ + che;?]
+ Je(L Dler|* + Pr(l, )|c* (crcg + crep) +
Ke( 1)lerf?lcrl” + Qp(L 1)[cg[* (cucq + crey).

(B2)

where Ir(,1), Jr(1,1), Ke(L,1), Le(L,1), Pe(,1) and Qg(l,1) are the
renormalization coefficients for PR. Analogously, the normalization con-
dition of wavefunction |¥) can also be expressed as

1=3 [cjf* = Re(L, 1)|c* + Sr(l, 1)[cr)?
J

+ Ur(l, 1)[cicg + creyl.

(B.3)

Following a similar renormalization procedure for the DOS explained
at the end of Appendix A, by using the Schrédinger equation instead of
the Dyson one, the renormalization coefficients for PR of a (m,n)-type
GF chain of generation ! can be iteratively calculated for k=
2, 3, -, Iby means of

Ta(k,\) = eg(k,)\){ea(k, \) []ﬁ(k, 8) + L (€, g)—q
+2Qp(k, )} + Ip(k, 8) + 2604 (k, \)Py(k, )
+ 62k, N) [Kp(k, 6) + 2Lg (k, 6)],

(B.4)

Jatk,N) = 3k N { k. M) [ (k. ) + 1:(6, )1
12568} + (6 ) + 20k NQu(E:S)
64 (VK €, §) + 2Ls(6.€)),

(B.5)

Ka(k,\) = 62 (k, ){4% (k,N) [jﬁ (k,8) + (€, &)—

+K:(8, ) +4da(k, AP:(§, O}

) (B.6)
+2 (k. M) [Kps(k, 8) + 40a(k, N)Qp (K, 6)]

La(k, ) = 60k M) {2k M) [ (k. 6) + 1:(6,§) 1]
+1:(6, ) + da(k MPs(€.9)) B.7)
+¢§z (k7 )\) [LB (k7 6) + 0q (k~ )\)QB (k7 6)} )
Pa(k, ) = 63,k N){ 260k M) [J5(k.8) + 156, $) 1
+P€(g7 g)} + 001(k> )\)d)a(kv )\) { [Kﬂ(k7 8)+
2L (k,8))+30a(k, N)Qp (k. )} + (k. NPy (k.6),

(B3)

Qak,A) = & (k: N){ 200k, N) [k, 8) + 1:(6, ) —

+Qp(k,0) }Jrga (k, N) by (R, M{[K (8, &)+
2L(E, § )l +3¢a(k A Ps(§ O} +0a(k,N)Q:(8,9),

(B.9)

Ra(k,N) = 03(k, A) [Sa(k, 6) + Re(€,$)—1]

+Rp(k, 6) + 20a(k, \)Up (k. 6), (B.10)

Sa(k,A) = ¢> (k. N)[Sp(k.6) + Re(§,$)—1]

Se(€,8) + 2da (kM Ue(€,8). (B.11)

Ua(k,N) = 0 (k. N){dg (k. N)[Sp(k,6) + Re(§,$)—1] (B.12)

+ Us(g‘g)} +R;5(k, 6) +d)a(k7 )\)UH(I 76)7 .
where 6, and ¢, are given in Eq. (A.3) while the meaning of
a, B, & 6, A, §and ¢ are specified in Table Al.

The initial conditions for the renormalization of PR are I(0,1)=
Jr(0,1)=1, Kr(0,1)=L¢(0,1)=Pr(0,1)=Qx(0,1)=0, R{(0,1)=5¢(0,1)=1,
Ur(0,1)=0, E;(0,1)=Eg(0,1)=0, tr(0,1)=tp, Ix(1,1)=Jx(1,1)=1,
Kr(1,1)=Lg(1,1)=P(1,1)=Qx(1,1)=0, Rx(1,1)=Sx(1,1)=1, Ux(1,1)=0,
EL(l,l):ER(l,]):O, and tF(],]):tA

Appendix C. Renormalization formulas for the Kubo-Greenwood
conductivity

In this article, the electrical conductivity (o) is analyzed by means of
the Kubo-Greenwood formula given by Eq. (19), in which the trace can
be written as [30]

Tr{p ImG" (E + ho) p ImG" (E)}

- ’Zh" [S(Egy E* 1) + S(E B, )= S(Efy E~ )

S(E, E*, D] (C1)

where E5 =E 4 ho + in, E* = E+ in, 1) is the imaginary part of the ener-
gy and
S(ES,EV, D)
N()—1

= Z t: 1+1t] Jj+1 {261+1 j(Em)G j+1, 1(5)

Gy (EaIG (Bl )Gl )},

(€2)

in which k and v could be + or —. The partial sums S(E;,, E*,[) can be
written in terms of the Green's function at extreme sites of the system as

v

1)
GLL(EV)

l'n

S(Eg, EY. D) = Z(Ey.
SA(ES, EY,1,1)Gyy (E
+BF( " EV l ] LR
+CF( K E ll RR
+DF(E“ E” 171
+D(E"

(Eqy
(E
(E

g 9]

gx

C\O

E

SioEoEN

) LL
DG
1)G 1(E5
L 1)Gry
Vl l)GLR( )Gr

By L 1)Gur(E") Ger (Ey)
Tp(ESEVLT) )Gui (ES)
+JF( Vszalvl)GL‘L(EV
+KF(EK EY l 1)G[_R(
—I—K[:(EV7 w’l 1)GLR(
+Lg(ES E” 1, 1)Grr(Eg,
-‘rLF(EV7 EZ) I7 ])GR,R (Ev

/\/‘\A/‘\/‘\
[g9]

t

\_/\—/\_/V\/\_/
Q

+Fp
+FF
+g
+Ip(E”

D
=

o

R
R
L.R
R
R

=
——
ey
5=
D0
=

’
V K
K
LL)

(9]
EI

2:!
—
m,
\.
—€

where the subscripts L and R of the Green's function respectively denote
the left and right extreme atom. The coefficients Ag(E;,E», [, 1),
Br(E1,E3,1,1), -, Zg(Eq,Eo,1,1) in Eq. (C.3), being E; and E, either Ej,
or EY, can be iteratively calculated for k=2,3, ---,I by means of

Aa(E1,Ex, k,\) = —[Po(E1,E2, kK, N)—Po(E2, Eq Kk, )\)]2, (C4)
Bo(E1,E2, k,N) = 2[Po(E1, Eg, k, N)—
Pa(E2,Er, k,N)][Qa(Ea, Er, k, A)— Qg (Er, E2, K, N)] €5)
+2[Ra(E1, E2, k, \)—Sa(E2, Eq, k, N)]x ’
[Ra(E2, E1, k, \)—Sa(Ey, Ez, k, N)],
Cal(E1,Ez,k,A) = —[Qa(E1, Ez, k, ) —Qu(E, E1, k, A)), (C.6)
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Do(E1,E2, k,\)
= 2[Po(Eq, Ez, K, N)—Po(Ez, E1, k, M) (C7)
X[Sa(E2, E1, k,\)—Ra(E1, E2, k, N)],

Fa(E1,E2,k,\) = —[Ra(E1,E2, k, \)—Sa(Ez, E1, k, )], (C8)

Ia(E1, Ez, k,N)
= 2(Qa(E1, E2, k,\)—Qq(Ea, E1, k, M) (C9)
X[Sa(E2,E1,k,A\)—Ra(E1, E2, k, N)],

Ja(E1,Ez, k) = po(E2, k, N)Fg(Eq, E2, k, 6)
0 (Er, k, MKy, Ez, k. 6) + Oa(Er, k. )
Xpa(Ez, k7 }\){Iﬁ(EhEz, k, 6) + UQ(E]7E27 k, )\)
+0q(Eq, k, )\)[Cﬁ(E],Ez, k, 0) + Ag(Eq, Ea, g,g)
+Ta(E1,E2. K, N)]} + 05 (Er, k. N)
x[Lg(E1,E2, k. 8) + J:(E1, E2, €, {)]
+][5(E17E2: k7 6)7

(C.10)

Ka(Er.Ez, k. N) = 200 (E2, k, N)Ba(Er, k. A)

X o (E1, K N)[Cp(Er, Ez, k,6) + Ae(Er, E2, €, &)
+Ta(E1,Ez, k. N)] + g (E2, kK, N)Va(Er, B2, K N)
+200(E1, k, N (E1, K, A)[Lg(E1, Ez, K, 6)
+J:(E1,E2, €, §)] + Po(Ez, K, N){0a(E1, K, N)
x[De(Ez, E1,8,8) + Wa(Ea, E1, k, M)+
b (Er, kN [I(E1, E2, k, 8) + Ua(Eq, Eo, k,N)] }
+¢a(Er, &, MKp(Er, E2, k, 6)
+0a(Eq1, k, N)Ke(E1, E, €, $),

(C.11)

La(E] ) E27 k7 }\) = pa(EL k7 }\)FS(E27Elag7 g)
+¢Q(E]ﬂ k7 )\)KE(E] 5 E27 ga g) + pa(E27 k’ )\)X
¢a(E1:k7 )\){DS(E27E17g7 g) + WO((E27E17k7 )\)
+a(E1, k. N)[Cp(Er. Ez, k, 6) + Ag(E1, E2, €, )+
T(X(EhEZ: ka )\)]} + (bgz(E] ) k7 )\)[LB(El ) E27 k7 8)
+JS(E17E27§7 g)] +L€(E17E27g7§)7

(C.12)

and

ZQ(E1,E2, ](, )\) = pa(El s ](, )\) [L[g(E],Ez, ](, 6)
+J(E1,E2,8,§)] + Zp(Eq, E2, K, 8) + po (E1, k, N)
Xpa(Ez,I(,)\)[Cﬁ(El,Ez,k,(s) +AS(E1,E2,§§)
+T(x(E17E27 k7 )\)] + pa(EL k7 }\)

x [Lg(E2, E1,k, 6) + Jo(E2,E1,§,8)]
+Z¢(E1,E2,8,8),

(C.13)

where the meaning of o, 3, €, 6, A, § and ¢ are specified in Table A1 for
each stage of renormalization,

PolEg,kN) = [2—E1(Eg, &, {)—Er(Eq, k. 6)] ", (C.14)
Oa(Ep, k,N) = tp(Eg, k, 6)pe(Eg, K, N), (C15)
GalEorkN) = (e, & §)pe(Egr KA, (C16)
EL(E¢7 k7 )\) = EL(E(P7 k7 6) + t[Zj(E({N k7 5)pt)l(E‘1D7 k7 )\)7 (C17)
Er(Eg, k,\) = Ee(Eg, §,$) + t7(Eg, & $)Pal(Eg, k. N), (C18)
ta(Eg, k. N) = tp(Eg, k,0)ts(Ee. §,§)pa(Ep, k, N), (C19)
Po(E1, Bz, K, N) = 0a(E2, k, MRp(E1, E2, k, 6)
+0a(E1,k,)\)5/5(E],Ez, k, 5) + Oa(El s k, )\)X (C 20)
Oa(E, &, N) [Pe(E1, E2, §,§) + Qp(Er, E2, k, 6)] ’
+Pg(E1,Ez. k. ),
Qu(E1,E2, k. \) = do(E1, k. MRe(E1, E2, §,8)
+QS(E1¢E2=§7§) +¢a(E2:k7 )\)SS(ELEZ,gvg) (C.Zl)

+¢q(Er, K, N)do(Ez, k, N)[Pe(Eq, E2, §, &)
+Qp(E1, E2, k, 0)],

Ra(E] s Ez, k7 )\) = d)a(Ez, ’(7 )\)R[;(El s Ez, k, 6)
+0a(E1, K, N)bo (E2, k, N)[Pe(Eq, E2, §, &)+
Qp(Er,Ez, k. 6)] + 0 (E1, k, NR:(E1, E2, €, £).

(€.22)

Sa(E1, Bz, k,\) = o (E1, k, \)Sp(Eq, Ez, k, 6)
+0a(E2, k,N) o (E1, K, A)[Pe(Eq, E2,§,8)+
Qp(E1,E2,k,8)] + 0a(Ea, k,N)Se(E1, E2, €, &),

(C.23)

Ta(Er,Ea,k\)
= 2[P:(E1,E2,§,{)—Pe(Ea, Eq, §,9)]
x [Qp(E2, Eq, k,8)—Qp(Eq, Ez, k., 6)],

(C.24)

Ua(E1,E2.k,\)
= 2[P¢(Eq,Ea,§ &) —Pe(Ea, Eq, €, )]
X [Sﬁ(Ez,E] s k, 5) —R[g(E1,E2, k, 5)].

(C.25)

Va(E1, Ez, k,N)
= 2[S¢(Eq, E2, §,8)—Re(E2, E1, §, )]
X [S[g(Ez,E] s k, 5) —R[g(E1,Ez, k, 5)],

(C.26)

and

WO((EDE27 k7 )\)
=2[Qp(E1,Ez, k., 8)—Qp(Ez, Eq, k, 6)]
X [Se(E2,E1, & &) —Re(E1, E2, §,8)],

(€.27)

being E, either E; or E,.
The Green's functions at the ends of system are the same as in Ap-
pendix A, except they are evaluated at E instead of z, i.e.,

Gri(Eg) = {Ew—EL(I:b 1) 80
' Eo—Ep(l)
(C.28)
R/f t%’(E(ﬁh lv 1)
—Ep(l) — o 0
E(P_ER(E‘Pv l> ])_EP(I )_ E‘;ng(l/)
Grr(Eg) = {E(p—ER(Ew,l, 1)—%
© P .
€29
L t%-"(E(P 17 1) ( )
_EP(I)7 tz(l,) )
Ep—Ei(Ep, 1, 1)—ER(I)——21__
e 7 Ee—E(l)
and
Grr(Ep) = tr(Ep. | 1)Grs(Ey) (C30)

E,—EL(E 11)—5"(1’)—&/).
R 0

Finally, the initial conditions are Ar(E1,E»,0,1)=0, Cg(E1,E»,0,1)=0,
DF(E1,E2,0,1 ):O,IF(E],Ez,O,l ):O, ]F(E1,E2,O,1 ):O, I(F(E1,E2,O,l ):O,
LF(E1 ,E2,0,1 ):0, ZF(E],Ez,O,l ):0, PF(E1,E2,0,1 ):0, QF(E1 ,Ez,o,l ):0,
RF(E],EZ,O,l):O, EL(Ew,O,l):O, ER(Ew,O,l):O, BF(El,Ez,O,l):ztz,
Fr(E1,E2,0,1)=—13, tp(E5,0,1)=tp, Ap(E1,E2,1,1)=0, Sg(E1,E2,0,1)=ts,
CF(E1,E2,1,1 )=O, DF(E1,E2,],] )=O, IF(El,Ez,] ,1 )=0, _]F(E1,E2,l,] )=O,
KF(El,Ez,1,1 ):O, L[:(E],Ez,l,l ):O, ZF(El,Ez,l,l ):O, PF(E],Ez,l,l ):0,
Qr(Eq,E2,1,1)=0, Rp(E1,E2,1,1)=0, E((E,,1,1)=0,Er(E,,1,1)=0,
BHE1E2,1,1)=284, F(E1,E2,1,1)=—14, SH(E1,E2,1,1)=t4, and t{(E,,1,1)=ta.
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Inhomogeneity in nanowires can be present in the cross-section and/or by
breaking the translational symmetry along the nanowire. In particular, the
quasiperiodicity introduces an unusual class of electronic and phononic
transport with a singular continuous eigenvalue spectrum and critically
localized wave functions. In this work, the thermoelectricity in periodic and
quasiperiodically segmented nanobelts and nanowires is addressed within the
Boltzmann formalism by using a real-space renormalization plus convolution
method developed for the Kubo—Greenwood formula, in which tight-binding
and Born models are, respectively, used for the calculation of electric and
lattice thermal conductivities. For periodic nanowires, we observe a maximum
of the thermoelectric figure-of-merit (Z7T) in the temperature space, as oc-
curred in the carrier concentration space. This maximum Z7T can be improved
by introducing into nanowires periodically arranged segments and an inho-
mogeneous cross-section. Finally, the quasiperiodically segmented nanowires

reveal an even larger ZT in comparison with the periodic ones.

Key words: Thermoelectricity, Kubo—Greenwood formula, real-space
renormalization method, nanowire heterostructures

INTRODUCTION

The direct conversion between thermal and elec-
trical energies by thermoelectric devices has
attracted great attention in recent years. Low-
dimensional materials seem to be promising candi-
dates for high-performance thermoelectric devices,
whose efficiency is determined by the dimensionless
figure-of-merit defined as ZT = (6S2T) / (ke + Kph)»
where the Seebeck coefficient (S), electrical conduc-
tivity (o), electronic (i.;) and phononic (i) thermal
conductivities can be calculated by using the Boltz-
mann formalism.! The inherent correlation between
these thermoelectric quantities makes difficult to
improve the value of ZT.

In general, the Seebeck coefficient (S) is propor-
tional to the average transported electron energy
relative to the chemical potential (), i.e.,
S o< (E — p).%2 Thus, S is null for u located at the

(Received June 2, 2016; accepted September 7, 2016)
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center of a symmetric electronic band. When u
moves towards the band edges in a three-dimen-
sional system, the magnitude of S grows and ¢
diminishes. The combination of these two trends
leads to the existence of a maximum Z7T in the
carrier concentration space.’

In the temperature space, the power factor (6S?)
is null at zero temperature, since ¢ or S is,
respectively, nil for p located outside or inside the
electronic band. Hence, the power factor increases
with T in the low-temperature regime, because it is
a positively defined quantity. This trend has been
observed in single nanowires.*® For the extreme
high-temperature limit, both electrons and holes of
a semiconductor have contributions to S with
different sign and almost the same magnitude,
leading to a significant reduction of the Seebeck
coefficient. Consequently, a maximum ZT is often
observed in the temperature space.

This maximum Z7T can be improved by reducing
the cross-section of a nanowire, as reported by many
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theoretical’” and experimental® studies, where a
rapid growth of the power factor with the reduction
of cross-section area is observed. On the other hand,
nanowire (NW) heterostructures constitute another
important alternative to improve thermoelectric
properties, because the phonon scattering at the
compositional interfaces leads to a lower lattice
thermal conductivity.® For example M503(Zn0),
(M = In, Ga, Fe) segmented nanowires reveal the
1mp0rtance of segmentation in nanowires.'® In fact,
a quasiperiodic arrangement of these segments
following the Fibonacci sequence could induce
interesting changes in the thermoelectric properties
of a nanowire, since its energy spectrum is singular
contmuous on a Cantor set of zero Lebesgue mea-
sure'’ whose wavefuctions are critical and self-
similarly localized in the real space.'? In this article,
we analyze the dependence of ZT on the tempera-
ture, carrier concentration, cross-section area and
longitudinal inhomogeneity of a nanowire, by using
the Boltzmann and Kubo—Greenwood formalisms
and a previously developed renormalization plus
convolution method.

In order to isolate the effects of long-range
quasiperiodic order on thermoelectric properties,
we will carry out this analysis by means of a simple
single-electron tight-binding Hamiltonian and a
first-neighbor Born model on cubically structured
nanowires, without considering the electron—elec-
tron and electron—phonon interactions nor the
anharmonicity. This kind of electronic Hamiltoni-
ans has been successfully used in the descr1pt10n of
electronic properties of semiconductors,'® while its
vibrational behavior derived from covalent bonds
can be properly reproduced by the nearest-neighbor
Born model including central and non-central
forces.!*1® Despite the simplicity of this semi-em-
pirical model, its results can be extended beyond the
analyzed parameters, as discussed in “Analysis of
Parameter Dependence”.

THE MODEL

Based on the Boltzmann formalism and the
Kubo-Greenwood formula, thermoelectrlc quanti-
ties can be calculated through

2
zr— 95T (1)
Kel + Kph
O-(:ua T) = e2L0(,uv T)v (2)
_ Ll(:u> T)
S(:ua T) - |€|TLO(#, T) ’ (3)
and
o L2(.u'7 T)LO (.uv T) - L21(:“7 T)
where
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La(n,T) = — 2 / aB(E - 10" L e {5 GEIRGE) ).

(5)
being Q the system volume, py the projection of
momentum operator along the nanowire,

f(E) = {1+exp|(E — u)/(kgT)]} ' the Fermi-Dirac
distribution with chemical potential u and temper-
ature T, G(E) = G"(E) — G~ (E) the discontinuity of
Green’s functions with G*(E) and G~ (E) being the
retarded and advanced single-electron Green’s func-
tions, respectively.'®

On the other hand, the lattice thermal conductiv-
ity (xpn) can be calculated by usmg the Kubo—
Greenwood formula for phonons given by'%%°

. —2h° Z /
o (T " nQkg ehw/kBT 1)2 (6)

Tr {AXGph (0)AGpn () }z’

hw/kBT

where the summation of / is over the longitudinal (L)
and transversal (T) modes, Gph(w) is the discontinu-
ity of phononic Green’s functions determined by
(M»?I — ®)Gph(w) =1 and the elements of matrix
A, are [Ay],,(L.j) =3 (R — R}) @ (L,)), being M the
atomic mass, I the matrix identity and &, (l,j) =
9?Vyj/ou(1)Ouy (j) the dynamic matrix. The interac-
tion potent1al (V) between nearest- ne1ghb0r atoms /
and j in the Born model is given by' Vi =

3 (@ = P)|u) —u()] 7 w(l) — w(j)]?, where
u(j) is the displacement of atom j with respect to its
equilibrium position, « and f are the central and non-
central restoring force constants, respectively. The
unitary vector 7n; indicates the bond direction
between atoms [ and j. Notice that in this article the
temperature dependence of thermoelectric proper-
ties arises from the statistical factors in Eqs. 5 and 6,
while the electronic band structure is independent on
the carrier concentration determined by the position
of chemical potential.

Let us consider a single-band tight-binding
Hamiltonian (H) with null on-site self-energies
given by H =73, {t;|ll){jl + i)}, where
t;; =t;; is the nearest-neighbor hopping integral.
For the sake of simplicity, a uniform bond length (a)

is taken and pyx=1 [H, x} =tmas L)
(T+1 —t-171){ — 1]}. For a cubically structured
nanowire with planar defects, the Hamiltonian H
and the dynamic matrix ® are separable, i.e.,
H :I{TH ®Il +IAH ®I—L, where ﬁll (Iﬁ) and I—L (Il)
are Hamiltonians (identity matrices) of the parallel

and perpendicular subsystems, respectively. The
convolution theorem can be expressed as®!
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Tr (pG(E)p:G(E))
=3 Tr(pG(E — B, )pGI(E - E)
for electrons and
Tr{AGon (o) AxGon () },
- ZTI‘{ GH w? — w%)AXC;‘P)h(wZ —}) }l ®)

for phonons, where E; and M w% are eigenvalues of

H, and @, respectively. In this article, we only
analyze the bond problem, i.e., nanowires with null
self-energies and a constant atomic mass (M).

(7)

PERIODIC NANOWIRES

For cubically structured periodic NW of NN,
atoms connected to two semi-infinite periodic NW
leads with hopping integrals ¢ and Born central (o)
and non-central (f) interactions, analytical solu-
tions of thermoelectric quantities can be found,
since the traces of Egs. 7 and 8 for a periodic NW
with square cross section of N, atoms are, respec-
tively, given by,??

Tr{pG(E)p<G(E) }
Z E Ex+2|t|)
(v —1) a2’"2/ <2h2)
and
Tr {Axéph (wz)AXGPh () }z
:—;{[1_6( - of, —4of) | (V) - 1)’ /8],

(10)
Where O(x) is the Heaviside step function wl could

O(E —E, —2[t])] (g)

be w?=o/M for longitudinal or wB p/M for

transversal vibrational modes,
E, = —2|t|{cos {mn/(Ni/Z + 1)} "
+c0s[nn/(N1/2+1>]} =

w%L = 2(0%{2 —cos[ -1) /Nl/ﬂ
—cos|(n—1)=n N2 12
[n - 0= /N1,
and

w%T=2w3{1—cos[ -1) /N1/2” 19)

+2w%{1 —cos{(n -1 n/Nj/ﬂ},

beingm =1,2,.... N/ and n=1,2,... N2,
In Fig. 1, we show (a—d) the electronic density of

states DOS(i) = -1, Im [G;(ﬂ)} (blue lines) and

(a’—d’) the zero-temperature electrical conductance
g(w) = a(u)Q,/Q (red lines) normalized by the quan-
tum conductance g, =2e?/h as functions of the
chemical potential () for (a,a’) a periodic chain,
(b,b’) a periodic nanobelt with cross-section of 7 x 1
atoms, and periodic nanowires with cross-sections of
(c,c’)7 x 3 and (d,d") 7 x 5 atoms, whose structures
are schematically presented in the respective fig-
ures (a”’—d”). All these nanostructures have a length
of N =100663297 atoms connected to two semi-
infinite periodic leads with the same cross-section
and Hamiltonian parameters of the system. The
figures of this section correspond to periodic nanos-
tructures with null self-energies, hopping 1ntegral
t = —1eV, atomic mass M = 4.81381 x 10 %¢ kg,
central and non-central restoring force constants
o =100 N/m and f =20 N/m, respectively. These
vibrational parameters are close to those of crys-
talline silicon'® and lead to Aw, = 30 meV. The
imaginary part of energy used in this article has
been 5 =1073|¢| for DOS and n =1073|t|/N| for
conductance. Observe the quantized conductance
steps present in these periodic nanostructures and
its number grows with the cross-section area.
Furthermore, in DOS spectra, the van Hove singu-
larity is found at the edge of each step.

In Fig. 2, we show (a, a’, a”) the density of states
(DOS) (gray lines) and electrlcal conductivity (o)
normalized by g = e QH/(anh) of a periodic chain, (b,
b’, b”) Seebeck coefficient (S) normalized by
So = —kg/|e|, (c, ¢/, ¢”’) thermal conductivity by
electrons (i), (d, d’, d”) lattice thermal conductivity
(kpn) normalized by ko = kpwy€Y / (2an) of a periodic
chain, and (e, €', €”’) ZT as functions of chemical
potential (u) for the same periodic (a—e) nanobelt,
(a’—€’) nanowire with cross-section of 7 x 3 atoms
and (a”—e”) nanowire with cross-section of 7 x 5
atoms as in Fig. 1. The temperature (T) dependence
of these thermoelectric properties is exhibited in
Fig. 3 for the same nanostructures analyzed in
Fig. 2, where the chemical potentials are chosen at
Hout = E.—0.01 eV and i, = E. —0.01 eV, being
band edges at E. = —3.84776 eV, E. = —5.26197 eV
and E, = —5.57981 eV, respectively, for the periodic
nanobelt with cross-section of 7 x 1, and nanowires
with cross-sections of 7 x 3 and 7 x 5 atoms.

Observe that the electrical (¢) and thermal con-
ductivities (k¢ and xpp) in Fig. 2 diminish with the
growth of cross-section area, due to the quantum
interference between conduction channels. For a
given temperature, the Seebeck coefficient (S) lin-
early increases when u moves away from the band
edge and this linear dependence has a weak influ-
ence of the cross-section area. Furthermore, maxi-
mum values of ZT are found, as a consequence of the
growth of ¢ and the decay of S when u increases, and
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Fig. 1. (a—d) Density of states (DOS) (blue lines) and (a’—d’) zero-temperature electrical conductance (g) (red lines) as functions of chemical
potential (x) for (a, a’) a periodic chain, (b, b’) a periodic nanobelt, and periodic nanowires with cross-sections of (c,c’) 7 x 3and (d,d) 7 x 5
atoms, whose structure sketches are, respectively, shown in (a”—d”) (Color figure online).

their locations go away from the band edge when
the temperature increases.

Figure 3 exhibit thermoelectric properties
obtained from the same nanobelt and nanowires of
Fig. 2, now versus the temperature (7). Observe the
metallic (blue triangles) and semiconducting (ma-
genta circles) behaviors of the electrical

conductivity (¢), when the chemical potential (u)
is, respectively, placed inside (y;, = E. + 0.01¢|) and
outside (uy, = E. — 0.01]¢]) the electronic band. In
fact, the thermal conductivity by electrons (k) is
related to o through the Wiedemann-Franz law
given by ko = n?k%6T/(3e®) when u = py,. Further-
more, the thermal conductivity by phonons (xpn)
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Fig. 2. (a, a’, a”) Density of states (DOS) and electrical conductivity (c), (b, b’, b”") Seebeck coefficient (S), (c, ¢’, c”) thermal conductivity by
electrons (xg), (d, d’, d”) thermal conductivity by phonons (xph), and (e, €', e”) figure-of-merit (ZT) as functions of chemical potential (u) for
periodic nanobelt and nanowires with cross-sections of (a—e) 7 x 1, (a™-€") 7 x 3, and (a”"—e”) 7 x 5 atoms.

grows with T, the Seebeck coefficient (S) decreases
with 7', and the maxima of ZT in the temperature
space diminish with the growth of cross-section
area, when p = lout.

SEGMENTED NANOWIRES

In this section, we study segmented nanobelts
and nanowires with two types of blocks, A and B,
which can be periodic or quasiperiodically arranged,
as respectively shown in Fig. 4a—d and a’-d’. For
the quasiperiodic case, these blocks are ordered
following the Fibonacci sequence (F') defined by the

addition rule given by F(n) =F(n — 1) @ F(n — 2),
where n is the generation number and & indicates
the catenation process. If F(1) = A and F(2) = AB,
the Fibonacci chain of generation four is
F(4) = ABAAB.

For this study, we chose blocks of three bonds,
which can be characterized by hopping integrals (¢4,
tg) or by central (aa, o) and non-central (Sa, fB)
restoring force constants, when the electronic or
phononic transport is addressed. The studied nano-
belts and nanowires have inhomogeneous cross-
sections with non-constant hopping integrals (¢ and
#) placed in such a way that maintains the mirror
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Fig. 3. Temperature (T) dependence of (a, a’, a”) electrical conductivity (), (b, b’, b”") Seebeck coefficient (S), (c, ¢’, ¢”’) thermal conductivity by
electrons (i), (d, d’, d”) thermal conductivity by phonons (ipn), and (e, €, e”) figure-of-merit (ZT) for periodic nanobelt and nanowires with cross-

sections of (a—e) 7 x 1, (a™—€’) 7 x 3, and (a”"—€”) 7 x 5 atoms.

symmetry along both x and y directions, as illus-
trated in Fig. 4.

Figure 5 shows the electronic density of states
(DOS) (blue lines) and the zero-temperature elec-
trical conductance (g) (red lines) versus the chem-
ical potential (u) for (a—d) periodically and (a’—d")
quasiperiodically segmented (a, a’) single chains, (b,
b’) nanobelts with cross-section of 7 x 1 atoms, and
nanowires with cross-sections of (¢, ¢’) 7 x 3 and (d,
d’) 7 x 5 atoms, whose atomic ordering is sketched
in Fig. 4. The numerical calculations were per-
formed by taking tp = 0.3¢, tg = ¢, ap = 0.30, ap = «,
fa=03p, fg=pf and a uniform atomic mass
M = 481381 x10 2 kg, where t=—1eV is the
hopping integral, « = 100 N/m and f = 20 N/m are,

respectively, central and non-central restoring force
constants of the periodic leads.

The analyzed nanobelts and nanowires in Fig. 5
have a inhomogeneous cross-section, whose atoms
are connected by hopping integrals ¢ = c;?, central
o =cjo and non-central f; =cjf restoring force
constants, where j =1, 2, or 3 and v =x ory with
i =1249, ¢ =0.855 £ =0.579, c]=0.365,
¢y =0.517, and c} = 0.632. The periodically seg-
mented nanostructures have a length of
N| = 100663297 atoms and quasiperiodic ones have
a length of N\ = 117264509 atoms corresponding to
generation n = 36. Notice the multiband structure
in Fig. 5a—d, which are related to the periodic
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Fig. 4. Schematic representation of (a—d) periodic and (a’-d") quasiperiodically segmented nanostructures, being (a, a’) single chains, (b, b")
nanobelts with cross-section of 7x1 atoms, (c, ¢’) and (d, d’) nanowires with cross-sections of 7x3 and 7 x5 atoms, respectively. Both segments,
A and B, contain three bonds characterized by hopping integrals t, or fz. The cross-sections have non-constant hopping integrals distributed by

keeping the mirror symmetry.

segmentation. For example, there are six electronic
bands in Fig. 5a, which is originated by folding the
first Brillouin zone of a non-segmented linear chain
with a new lattice constant @ = 6a.2®> Moreover, the
values of hopping integral in the cross-section were
chosen in order to preserve true band gaps around
the spectrum center (u = 0) in Fig. 5b—d. For the
quasiperiodic case, at the spectrum center of Fig. 5a’
there is a narrow band containing a transparent
state?* surrounded by two band gaps, and such
feature is almost preserved in Fig. 5b’—d’. In general,
the conductance peaks of quasiperiodic systems are
smaller than those of periodic ones, due to the
absence of translational symmetry. However, this
reduction of electrical conductance does not neces-
sarily imply a worse thermoelectric efficiency.

In Fig. 6, we show (a, a’, a”) the density of states
(DOS) (gray lines) and electrical conductivity (o), (b,
b’, b”) Seebeck coefficient (S), (¢, ¢’, ¢”) thermal
conductivity by electrons (xq), (d, d’, d”) lattice
thermal conductivity (xpn), and (e, €, €”) ZT as

functions of chemical potential (u) for the same
periodically segmented (a—e) nanobelts and nano-
wires with cross-sections of (a’—”) 7 x 3 and (a”"—e")
7 x 5 atoms as in Fig. 5, at temperatures of 5 K
(green triangles), 50 K (blue squares) and 100 K
(red circles). The dashed lines in these figures indi-
cate the electronic band edges.

Notice that in Fig. 6 the values of ¢, S and . are
unchanged when the cross-section area grows, in
contrast to the clear reduction of «,, as occurred in
Fig. 2a-a”, c—c” and d—d” for periodic nanobelts and
nanowires without segmentation. These collective
behavior leads to an increase of the maximum
values of ZT when the cross-section area goes up.
These maxima are located out of the electronic band
and approach to the band edge located at
E.=-0.348652 eV  when the temperature
diminishes.

Figure 7 exhibit the thermoelectric properties
versus temperature (7T') for the same nanobelts and
nanowires analyzed in Fig. 6. The chemical
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Fig. 5. Density of states (DOS) (blue lines) and zero-temperature electrical conductance (g) (red lines) versus chemical potential (u) for (a—d)
periodic and (a’—d") quasiperiodically segmented (a, a’) single chains, (b, b’) nanobelts with a cross-section of 7 x 1 atoms, and nanowires with
cross-sections of (c, ¢’) 7 x 3 and (d, d’) 7 x 5 atoms (Color figure online).

potentials (u) were chosen for u;, = E. + 0.01 eV
(blue triangles) and o = E. + 0.01 eV (magenta
circles) for the same band edge of Fig. 6. Notice the
growth of ZT from 0.2 of Fig. 3 to almost unity and
its enhancement with the cross-section area, when
the segmentation and inhomogeneous cross-section
are introduced, in spite of the qualitative likeness
between Figs. 3 and 7.

In Fig. 8, the same thermoelectric properties of
Fig. 6 are exhibited as functions of the chemical
potential (u) for quasiperiodically segmented (a—e)
nanobelts and nanowires with cross-sections of (a’—
e) 7x3 and (a”"-e”) 7 x 5 atoms sketched in
Fig. 4b’—d’. The analyzed band edge is located at
E.=-0.33234 eV. Observe the fluctuation of the
electrical conductivity (¢) at 5K around
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Fig. 6. (a, a’, a”) Density of states (DOS) and electrical conductivity (o), (b, b’, b”) Seebeck coefficient (S), thermal conductivities by (c, ¢’, ¢”)
electrons (xe) and (d, d’, d”) phonons (xpn), and (e, €', e”) figure-of-merit (Z7) as functions of chemical potential (1) for periodically segmented
nanobelts and nanowires with inhomogeneous cross-sections of (a—e) 7 x 1, (a™—€’) 7 x 3, and (a”—e”) 7 x 5 atoms.

u = —0.32 eV, consistent with the density of states
spectra (solid gray lines). These fluctuations caused
by a dense distribution of bands and gaps smooth
out as the temperature grows. Moreover, we note an
additional increase of 20% in the maximum ZT at
100 K, mainly due to the reduction of thermal
conductivities.

Figure 9 show the temperature dependence of
thermoelectric = properties  corresponding to
quasiperiodically segmented nanostructures of
Fig. 8. The analyzed chemical potentials (u) were
win = E. + 0.01 eV (blue triangles) and pu = E. —

0.01 eV (magenta circles) with E, = —0.33234 eV. In
contrast to Fig. 7, ZT for y;, is close to that for pgy,
raised from a neither metallic nor semiconductor
temperature dependence of ¢. Also, we observe an
almost linear growth of ZT with temperature
around 100 K, which suggests a possible larger ZT
close to the room temperature.

ANALYSIS OF PARAMETER DEPENDENCE

There are essentially four parameters in the
electronic and vibrational Hamiltonians of periodic
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Fig. 7. Temperature (T) dependence of (a, a’, a”) electrical conductivity (o), (b, b’, b”") Seebeck coefficient (S), thermal conductivities by (c, ¢/,
c¢”) electrons (k) and (d, d’, d”) phonons (xpn), and (e, €’, e”) figure-of-merit (ZT) for periodically segmented nanobelt and nanowires with cross-

sections of (a—e) 7 x 1, (a™—€’) 7 x 3, and (a”—e”) 7 x 5 atoms.

systems and they are the hopping integral (¢),
atomic mass (M), central (¢) and non-central (/)
restoring force constants. Actually, the results only
depend on two normalized ones hw,/|t| and hwg/|t],

where v, = \/o/M and wg = /f/M. In Fig. 10, the
room-temperature (T = 300 K) thermoelectric ZT is
plotted as a function of these normalized parame-
ters for ta/tg = 1, 0.5, and 0.3. In the last two cases,
quasiperiodically segmented nanowires with cross-
section of 7 x 5 atoms are considered, as in Fig. 8.
Notice a general enhancement of ZT in Fig. 10 with
the quasiperiodicity strength, i.e., ZT grows when
the ratio f4/tg moves away from the periodic case

with ¢a/tg = 1, and a similar dependence of ZT on
hw,/|t| and hwg/|¢| for the three analyzed cases.
Observe also the existence of two maximums of ZT
located at Aw, ~ hwg — 0 and at Aw, ~ hwg ~ 0.1]¢|
for each value of ¢4/tg, where the first one is due to
the vanish of lattice thermal conductivity. The
second maximum of ZT at Aw, ~ hwg ~ 0.1]¢| is
originated from the increase of the vibrational band
width when %Zw, and Awg grow, whose phononic

DOS(?) and Tr{A.Gpn(0?)AxGpn(c?) | for the

periodic case are similar to those shown in Fig. 1d.%2
In other words, the growth of Aw, and Awg leads to a
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Fig. 8. (a, @', a”). Density of states (DOS) and electrical conductivity (g), (b, b’, b”") Seebeck coefficient (S), (c, ¢’, ¢”’) thermal conductivity by
electrons (xe), (d, d’, d”) thermal conductivity by phonons (xph), and (e, €', €”) figure-of-merit (ZT) as functions of chemical potential (u) for
quasiperiodically segmented nanobelts and nanowires with inhomogeneous cross-sections of (a—e) 7 x 1, (a™—€’) 7 x 3, and (a”"—€") 7 x 5

atoms.

shift of the maximum of both phononic DOS and
Tr{Axéph (wz)Axéph (wz)}l toward high frequency

and then, for a fixed temperature the Bose—Einstein
distribution in Eq. 6 will cover a smaller portion of
three-dimensional phonon band. In consequence, a
minor lattice thermal conductivity and a larger ZT.

Moreover, Fig. 10 shows an asymmetrical depen-
dence of ZT on Aw, and on Awg, since for both
longitudinal and transversal vibration modes the

non-central first-neighbor interactions (f) has a
double contribution to the lattice thermal conductiv-
ity than the central one () within the Born model. It
would be worth stressing that the results of ZT
presented in the previous sections correspond to two
specific points of Ao, = 0.03|¢| and Awp = 0.0134]¢| on
the surfaces of ta/tg = 1 and ¢a/tg = 0.3 in Fig. 10.
Hence, the enhancement of ZT through the
quasiperiodicity seems to be general and indepen-
dent of the Hamiltonian parameters chosen.



Gonzalez, Sanchez, and Wang

0.04 ———T1— U T T ) L
| (a) @) @")
o
L o0 MMM
© | Ao W, =E+001eV | o H,,=E-001ev | ]
0.00 foqpo0oqpogo9PY™, —0gpog0gpopo0OY, —oqp000p0gadXOT |
o(b) o(b") o(b") .
s 20| .. = -
(D _O __O __O i
10 | OOo 1 ooo 1 oo0 i
0
© 0.02
X
«* 0.01
0.00
< 0.04 |
\.C
= 0.02
0.00 |
N - 1 &@Bﬂé
05E o o 3
r r &0 .
0.0 & M Lo .

0 256 50 756 0 25 50 75 0 25 50 75 100

T(K)

T(K) T(K)

Fig. 9. Temperature (T) dependence of (a, a’, a”) electrical conductivity (), (b, b’, b”") Seebeck coefficient (S), (c, ¢’, ¢”’) thermal conductivity by
electrons (), (d, d’, d”) thermal conductivity by phonons (x), and (e, €', €”) figure-of-merit (ZT) for quasiperiodically segmented nanobelts and
nanowires with inhomogeneous cross-sections of (a—e) 7 x 1, (a’—€’) 7 x 3, and (a”"—€”) 7 x 5 atoms.

0030 Q)ﬂ//// a0 o0

Fig. 10. Thermoelectric figure-of-merit (ZT) at 300 K as a function of
normalized Hamiltonian parameters haw,/|t| and hawg/|t|, for a peri-
odic nanowire with ta/ts = 1 and quasiperiodically segmented nano-
wires with ta/tg = 0.5 and 0.3. All these nanowires have a cross-
section of 7 x 5 atoms, as in Fig. 8.

CONCLUSIONS

The effects of structural inhomogeneity on the
thermoelectric properties of nanobelt and nanowires
with macroscopic length are analyzed by means of a
real-space  renormalization plus convolution
method. The results reveal a clear increase of the
thermoelectric figure-of-merit (Z7T) when the seg-
mentation is introduced, in accordance with exper-
imental data.’® In fact, the quasiperiodicity
significantly diminishes the thermal conduction of
long wavelength acoustic phonons, which are
responsible of the phononic conductivity at low
temperature, and it is not easy to block their
transmission since they do not feel local defects
nor impurities. Contrary to periodic nanowires,
there is no reduction of ZT when the cross-section
area grows. In summary, the results of this work
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suggest the possibility of optimizing the thermo-
electricity through the inhomogeneity under design.

This analysis was carried out by means of semi-
empirical models applied to cubically structured
nanowires with a specific set of parameters. However,
its main result of the possibility to improve ZT by
introducing long-range inhomogeneity into nanowires
could not depend on the parameters chosen as shown
in “Analysis of Parameter Dependence”, and it would
be useful in the design and fabrication of efficient
thermoelectric devices, as suggested by the results of
M,05(Zn0), (M = In, Ga, Fe) segmented nanowires.'®
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ABSTRACT

Thermoelectric properties of segmented nanowires and nanobelts are studied by means of the
Kubo-Greenwood formula and a real-space renormalization plus convolution method. The tight-
binding and Born models are respectively used for the calculation of electronic and lattice
thermal conductivities. In particular, we investigate the thermoelectric figure of merit (ZT) of
periodic and quasiperiodically segmented nanowires with two different cross sections, where the
segments of the quasiperiodic one are ordered following the Fibonacci sequence. The results
show an increase of ZT when the cross section area of nanowires diminishes. In addition, we
present results of ZT in segmented nanobelts with an inhomogeneous cross section. For both
nanowires and nanobelts, the quasiperiodicity seems to be an important enhancing factor of ZT.

INTRODUCTION

Energy conversion through thermoelectric devices constitutes a sustainable alternative for the
generation of electricity. Their performance can be measured by using the dimensionless figure-
of-merit defined as

ZT =oST (i, + 1), (1)

where S is the Seebeck coefficient, o is the electrical conductivity, xe and xp, are the electronic
and phononic thermal conductivities, respectively [1]. The inherent correlation between these
thermoelectric quantities makes difficult to improve the value of ZT. Recently, nanowire
heterostructures, such as M,03/ZnO (M=In, Ga Fe) with compositional segmentation [2], have
demonstrated a significant improvement of ZT, mainly due to the phonon scattering at composite

interfaces. Likewise, nanobelt heterostructures have been made [3] and the power factor (o'S?)
of Sh,Te; nanobelts was found larger than the corresponding bulk value [4].

On the theoretical side, thermoelectric properties can be determined by using the Boltzmann
equation [5]. For aperiodic nanostructures, the atomic-scale modeling requires innovative
approaches, since the long-range structural disorder makes useless the Bloch theorem and
reciprocal space. In this article, we report a quantum mechanical study of thermoelectric
properties in periodic and quasiperiodically segmented nanowires and nanobelts by means of the
Kubo-Greenwood formula and a real-space renormalization plus convolution method [6], which
has the advantage of being computational efficient and able to address a macroscopic number of
atoms in a non-perturbative way.

THE MODEL

In the Boltzmann formalism, the thermoelectric quantities can be calculated by means of the
Kubo-Greenwood formula as [6,7]
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Q is the system volume, p, is the projection of momentum operator along the nanostructure,
f(E)={l+exp[(E—x)/(kT)[}* is the Fermi-Dirac distribution with chemical potential p and

temperature T, G(E)=G*(E) -G (E) is the discontinuity of Green’s functions, being G*(E) and
G (E) the retarded and advanced single-electron Green’s functions, respectively.

On the other hand, the lattice thermal conductivity (x,, ) can be calculated by using the Kubo-
Greenwood formula for phonons given by [8]
hm/kB 5 -

Kon(T) = Qk R ZI mﬂ {Aprh(m)Aprh((D)}la ©)
where the sum of | is over the longitudinal and transversal modes, Gph(w) is the discontinuity of
phononic Green’s functions determined by (Mw’l —®)G,, (o) =1 and the elements of matrix
AX are [Ax]vv'(|1 J) E%(RI - Rj )XCDVV’(L J) ’ belng CDVV'(I’ J)Zazvlj /auv(l)auv'(J) the dynamlc
1 A[u® —u(j)]’ is the

interaction potential with central () and non-central (/) restoring forces between nearest-
neighbor atoms | and j, whose bond direction is indicated by the unitary vector A,; and

matrix. In the Born model [9], V,J:%(a—ﬂ)‘[U(l)—U(j)]'ﬁu +

displacements from their respective equilibrium positions are u(l) and u(j).

Let us consider a single band tight-binding Hamiltonian (I:I ) with null on-site self-energies
given by H =Z<“_>{tllj D]+t 0) |} where t, . =t;, is the nearest-neighbor hopping
integral. For the sake of simplicity, a uniform bond length (a) is taken and

p="[H, x]=12%" {t,y,+1| I><I+1|—t,71'||l><l—1|} . For a cubically structured solid, the Hamiltonian
H and the dynamic matrix @ are separable, ie, H=H &I +i ®H, , where H (i )and H,

( Il) are Hamiltonians (identity matrices) of the parallel and perpendicular subsystems,

respectively. For systems beyond of one dimension, Egs. (2) and (3) can be rewritten through the
convolution theorem as

—2h
L (u,T)=
4. T) zm’Q Y-

—u)"gf—EzTr{oxé(E—Ei) 5.G (E-E,)} 4

and
o hu)/kB

QkT j "m/“ —1)?

0

Kp(M)=———= Tr{AG”(o) co,l)AG”(oo -0}, (5)
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where E, and M’ are eigenvalues of I-All and @, , respectively. In this article, we only analyze
the bond problem, i.e., nanowires with null self-energies and a constant atomic mass (M).

SEGMENTED NANOWIRES

In this section, we investigate the thermoelectric properties of periodic and quasiperiodically
segmented nanowires (SNW), as respectively illustrated in Figures 1(a,b) and 1(a’,b’) for cross
sections of (a,a’) 4x4 and (b,b”) 9x9 atoms connected by hopping integrals t. These SNW contain
two kinds of segments constituted by three bonds with hopping integrals ta or tg along the
nanowires. For the quasiperiodic case, these segments are ordered following the Fibonacci
sequence.
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Figure 1. Schematic representations of (a,b,c) periodic and (a’,b’,¢’) quasiperiodically segmented
nanowires with square cross-sections of (a,a”) 4x4 and (b,b’) 9x9 atoms and (c,c’) nanobelts with a cross
section of 7x1 atoms connected by hopping integrals ty, t, and t;. These nanostructures contain two kinds

of segments A and B of three bonds characterized by hopping integrals ta and tg, respectively.
In Figures 2, we show (a,a”) the electronic density of states DOS (,u)z—%zj Im[G/" ()], (b,b*)

electrical conductance g(u) = o() 2, /€. normalized by the quantum conductance g,=2e*/h,

(c,c’) Seebeck coefficient (S) normalized by S,=-k;/le|, (d,d”) thermal conductance by
electrons K, =« (1) Q, /Q , (e,e’) thermal conductance by phonons K, =« (1) Q2, /Q in the

unity of the thermal quantum conductance K,= k2T /(6%), and (f,f*) the figure-of-merit (ZT) as
functions of the chemical potential () for periodic (blue open circles) and quasiperiodic (red
solid circles) SNW with cross sections of (a-f) Q =9x9 and (a’-f”) 4x4 atoms at a temperature
of 25 K. The numerical calculations were carried out by taking t,=0.5t, t;=t, ,=0.5¢,
ag=a, f,=058, B,=pF and M=4.81381x10"°kg, where t =—1eV is the hopping integral,

a=100N/m and B=20N/m are respectively central and non-central restoring force constants
of the periodic leads. The periodic SNW have a length of 402653185 atoms and the
quasiperiodic ones possess a length of 953434 atoms. All the nanostructures analyzed in this
paper are connected to two semi-infinite periodic leads with null self-energies, hopping integrals
t, central o and non-central B restoring force constants. Note in Figures 2(a,a’) that both periodic
and quasiperiodic SNW have the same electronic band edges (E,) at E.=—4.236t| for SNW of
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Figures 1(a,a’) and at E,=—4.8043|t| for SNW of Figures 1(b,b’), where maximum ZT are

located. Moreover, quasiperiodic SNW have lower electronic and phononic conductance than
those of periodic ones, which leads to a larger ZT in quasiperiodic SNW than that of periodic
ones.

DOS(n)
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K (K, K (WK, S@S,
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Figure 2. Chemical potential (l1) dependence of (a,a’) Density of states (DOS), (b,b’) electrical
conductance (g), (c,c”) Seebeck coefficient (S), (d,d’) thermal conductance by electrons (Ke)), (e,e”)
thermal conductance by phonons (K), and (f,f) figure of merit (ZT) for periodic (blue open circles)
and quasiperiodic (red solid circles) segmented nanowires (SNW) with cross sections of (a-f) 9x9 and
(a’-f”) 4x4 atoms at 25 Kelvins.

SEGMENTED NANOBELTS

In this section, we investigate the thermoelectric properties of periodic and quasiperiodically
segmented nanobelts (SNB), as respectively illustrated in the Figures 1(c) and 1(c’). These SNB
have a thickness of one atom, a width of seven atoms and segments formed by three bonds with
hopping integrals of ta or tg along the nanobelts. For the quasiperiodic case, these segments are
arranged following the Fibonacci sequence. In the cross section, we have symmetrically
distributed non-constant hopping integrals ty, t; and ts.

In Figures 3, we show (a,a’,a”) electrical conductivity o(x,T), (b,b’,b”) Seebeck coefficient
S(u,T), (c,c’,c”) thermal conductivity by electrons «,(«,T), (d,d’,d”) lattice thermal
conductivity x, («,T), and (e,e’,e”) figure-of-merit (ZT) as functions of chemical potential ().

The electrical and thermal conductivities are respectively normalized by o,=e*Q /(aﬁh) and

Ky = ke, Q2 /(2ar) of a periodic chain, being o, = \/a/M . Figures 3(a-e) exhibit results of a
fully periodic nanobelt with t =-1eV , « =100 N/m and £ =20 N/m, while Figures 3(a’-¢”)
and 3(a”-e”) respectively show results for periodic and quasiperiodic SNB with t, =0.3t, t; =t,
a,=03a, ag=a,p,=0.3p and B, = F. These two SNB, as showed in Figures 1(c) and
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1(c’), have a inhomogeneous cross section of 7x1 atoms connected by hopping integrals
t =1.248378t, t,=0.854990t, t,=0.579251t, central «,=1.248378¢c, a,=0.854990¢,

a,=0.579251 ¢, and non-central restoring force constants f3,=1.24837843, £,=0.8549904,
and S,=0.5792514. The periodic nanobelt and SNB have a length of €2,=100663296 atoms,
and the length of quasiperiodic SNB is ,=117264507 atoms.
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Figure 3. (a,a’,a”) Electrical conductivity (o), Figure 4. Temperature (T) dependence of (a,a’,a”)
(b,b’,b”) Seebeck coefficient (S), (c,c’,c”) thermal electrical conductivity (o), (b,b’,b”) Seebeck
conductivity by electrons (ke), (d,d’,d”) thermal coefficient (S), (c¢,c’,¢”) thermal conductivity by

conductivity by phonons (kph), and (e,e’,e”) figure of  electrons (ke), (d,d’,d””) thermal conductivity by
merit (ZT) as functions of chemical potential (i) for ~ phonons (kpn), and (e,e’,e”) figure of merit (ZT) for
periodic (a-e), periodically segmented (a’-¢”), and periodic (a-e), periodically segmented (a’-e”), and
quasiperiodically segmented (a”-e”) nanobelts with quasiperiodically segmented (a”-e””) hanobelts with
cross sections of 7x1 atoms at several temperatures.  cross sections of 7x1 atoms and gz =g, OF 44, -

The analyzed band edges (E,) in Figure 3 are located at E.=-3.8477|t|, E ,=-0.34784]t]|,

and E_=-0.33734|t| respectively for the fully periodic nanobelt, periodic and quasiperiodic

SNB. Note that the electrical conductivity (o) of quasiperiodic SNB is significantly smaller than
those of periodic nanobelt and periodic SNB. For a given temperature (T), the Seebeck
coefficient (S) is of the same order of magnitude for three analyzed nanobelts. Observe that the
thermal conductivities «,, and «,, of the periodic nanobelt are larger than those of the periodic

and quasiperiodic SNB. This fact reduces the thermoelectric figure-of-merit (ZT) of periodic
nanobelt, in accordance to Eqg. (1). In addition, a maximum ZT is found in three analyzed
nanobelts, since o grows and S diminishes when the chemical potential (L) increases [10].

Figures 4 show the temperature (T) dependence of thermoelectric properties for the same
nanobelts as in Figures 3. Observe two behaviors in Figures 4(a-a’*); the metallic one (blue solid
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circles) when u=g =E_+0.02|t] is inside and semiconducting one (open red circles) when
u=u,,=E_—0.02]t| is outside the electronic band. In fact, the thermal conductivity by electrons

ﬂzké

3e?

(k) is related to o through the Wiedemann-Franz law given by «,==£oT ,when u=yu, .

Furthermore, S decreases monotonically with T when = 4, and x,, diminishes with the

structural disorder. Notice also that there are maximums of ZT in the temperature space and they
reach large values when = u,, .

CONCLUSIONS

In this paper, we report the thermoelectric properties of periodic and quasiperiodically
segmented nanowires and nanobelts of macroscopic length in comparison to fully periodic ones
without segments. The calculations were carried out by using the Kubo-Greenwood formula and
a real-space renormalization plus convolution method. For all analyzed nanowires and nanobelts,
we observe maximums of ZT in both temperature and chemical potential spaces. In fact, larger
ZT are found when g = u,, in comparison to those of =z, i.e., semiconductors should be

better thermoelectric materials than metals. On the other hand, results reveal the importance of
the segmentation in ZT and its further improvement when the quasiperiodicity is introduced,
since its presence reduces the density of long-wavelength phonons and partially avoids the
thermal conduction by phonons at low temperature. Finally, the present study suggests the
possibility to improve ZT by introducing an inhomogeneous cross section of nanowires or
nanobelts, and setting a proper chemical potential position by applying a gate voltage [11].
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EDCs, while

processes have proved

photochemical and photocatalytic
themselves as perspective
methods for water purification and disinfection from
these compounds. Besides the broad number of
investigations devoted to decomposition of BPs using
photochemical approaches, there is almost no
information about mechanistic aspects regarding the
photochemistry of BPs.

In this work aqueous photochemistry of three bisphenols
(BPF),

and

(4,4’-hydroxyphenylmethane
4.4’-hydroxyphenylethane (BPE)
4,4-Bis(4-hydroxyphenyl)valeric acid (DPA)) was
studied by means of stationary (XeBr excimer lamp, 282
nm) and laser flash photolysis (6 ns, Nd:YAG laser, 266
nm). Main attention was paid to determination of
primary photochemical processes, nature, spectral and
“inetic properties  of excited states and primary
niermediates, rate constants of their reactions. Also,
final photoproducts and quantum yields of the photolysis
were determined and on the basis of obtained data
scheme of BPs photolysis was proposed.

This work was financially = supported by Russian
Foundation for Basic Research (grants Ne 16-33-00335

mol_a, 14-03-00692).

[1] T. Suzuki, Y. Nakagawa, 1. Takano, K. Yaguchi, Y.
Kazuo. Environ. Sci. Technol. 2004, 38, 23892396

[2] M.-Y. Chen, M. lke, M. Fujita. Environ. Toxicol.
2002, 17, 80"

Article ID: CPC2016_90007

Title: Photophysical Properties of
Perylenetetra-carboxylic Diimide Dimers with
Slipped ~ “face-to-face” Stacked  Structure and

Different Bay Substitutions

Name: Heyuan Liy
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Abstract
A series of perylenetetracarboxylic diimides (PDIs)
dimers with slipped “face-to-face” stacked structure and
different substituents at the bay positions have been
and the molecular structures

synthesized are

2016 Engii Conferences June Series

35

characterized by 1H NMR, MALDI-TOF and elemental
analysis. And different sub-stituents at the bay positions
of the PDI ring bring about various steric hindrance.
These different steric hindrance have caused significant
differences on the absorption and emission spectra. The
correlation between the photophysical properties and the

molecular structure is discussed.

Article ID: CPC2016_90006
Title:

macroscopic aperiodic multilayers

Photonic localization and transmittance in

Name: Vicenta Sanchez
Affiliation: Universidad Nacional Autonoma de Mexico
E-mail: vicenta@unam.mx

Abstract

The propagation of a wave through a medijum is very
sensitive to the structures at wavelength scale. In
consequence, dielectric materials  with periodic,
quasiperiodic, or aperiodically ordered structures are
considered excellent candidates for making optical
components capable of reflecting, confining or guiding
light, just as electrons and holes in electronic devices.
These materials are called photonic crystals. In this
work, we study the optical properties of quasiperiodic
and aperjodic heterostructures, whose layers are
ordered following the generalized Fibonaccj sequence
defined by the substitution rules of A->A"m}B"{n}
and B->A. To carry out this study, we developed a new
unified renormalization method for the quasiperiodic
and aperiodic transfer matrixes in order to analyse the
transmittance for a macroscopic number of layers. In
particular, we calculate the transmittance  in
quasiperiodic or aperiodic multilayers for transverse
electric (TE) and magnetic (TM) polarizations by
varying parameters such as the angle of incidence,
refractive index, layer thickness and wavelength. We
find an analytical expression for the transmittance,
when the layers follow a generalized Fibonacci
sequence for several generations. In addition, we find
the self-similarity in transmittance spectra when the
arrangement of layers follows a quasiperiodic sequence
(n=1) and a zone where the spectrum presents an

oscillating behaviour if the order is aperiodic (n>1),
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when the incidence angle is null. Finally, the photonic
localization is investigated by looking at the Lyapunov
coefficient and its results are compared with the

transmmitance ones for different incident angles.

Article ID: CPC2016_90008

Title: Theoretical design of boron nitride based
catalysts for oxygen reduction reaction

Name: Andrey Lyalin

Affiliation: National Institute for Materials Science
(NIMS)

E-mail: LYALIN.Andrey@nims.go.jp

Abstract

It is demonstrated that boron nitride (BN), which is
catalytically inert insulator with a wide band gap, can
be functionalized and act as an electrocatalyst for
(ORR). Such

functionalization can be achieved by the nitrogen

oxygen reduction reaction

doping or deposition of the BN nanosheets on some
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transition metals, such as Ni(lll) or

calculations

Au(111).
Density-functional theory show that
interaction of BN nanosheets with the metal supports
results in formation of the band states in the forbidden
zone of BN, as it occurs in the case of Ni(111) support
or a slight protrusion of the unoccupied BN states
toward the Fermi level as it observed for Au(ll1)
support. Modification of the BN band structure can be
explained by the orbital mixing and electron sharing at
the interface. Analysis of the binding preference and
adsorption energies of the ORR intermediates on
functionalized BN nanosheets demonstrate possibility
of ORR. It is experimentally proved that overpotential
for ORR at the gold electrode is significantly reduced
by depositing BN nanosheets (Fig. 1). The present
study demonstrates the possibility to functionalize inert
materials to become ORR catalysts, opening new ways
to design effective Pt-free catalysts for fuel cells based

on materials never before considered as catalysts.
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P41: Electronic localization and transport in macroscopic generalized Fibonacci
lattices: A renormalization approach
Colloquium: Quantum One-Dimensional Systems
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The structural disorder of a solid can profoundly modify the nature of electronic states. It is well known that they are
all extended in periodic lattices and exponentially localized in random-disordered systems of one and two
dimensions [1]. In particular, electronic transport and wavefunction localization are two closely related phenomena,
but their behavior in truly macroscopic aperiodic lattices is a non-widely addressed issue. In this work, we study the
electrical conductivity of generalized Fibonacci (GF) lattices [2] through the Kubo-Greenwood formula, while the
localization of electronic wavefunction is analyzed by means of the Lyapunov exponent and participation ratio (PR)
[3]. For periodic chains, an analytical expression of the Lyapunov exponent is obtained. We have also developed for
the first time a real-space renormalization method to calculate the PR of macroscopic GF lattices described by tight-
binding Hamiltonians. Moreover, we report a novel unified renormalization method for the Kubo-Greenwood formula
applied to GF chains. For quasiperiodic lattices, the results reveal a power-law decay of the spectral averages for
both PR and DC conductivity when the system length increases. In addition, we present a systematic analysis of the
AC conductivity spectra observing truly large resonant peaks in comparison to the ballistic one. The electrical
conductance of GF nanowires is also investigated by combining the renormalization method to the convolution
theorem [4]. Finally, the results suggest that PR could not be proper for the analysis of critically localized states.

[1] E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[2] A. Chakrabarti and S.N. Karmakar, Phys. Rev. B 44, 896 (1991).

[3] R. Oviedo-Roa, L.A. Pérez, and C. Wang, Phys. Rev. B 62, 13805 (2000).

[4] V. Sanchez and C. Wang, Phys. Rev. B 70, 144207 ( 2004).

P42: Detection and Mechanical Characterization of Lipid Nanoshells using Atomic Force
Microscopy
Colloquium: Physics of protein nanoshells
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"W University Amsterdam, AMSTERDAM, The Netherlands
2Rijksuniversiteit Groningen, GRONINGEN, The Netherlands

Multilamellar vesicles (MLVs) have beneficial properties over currently used unilamellar vesicles (LUVs) for drug
delivery, such as more hydrophobic volume for hydrophobic drugs. Moreover, they may have altered mechanical
properties, which are suggested to influence cellular uptake. We investigated the mechanics of small MLVs using
atomic force microscopy (AFM). We quantified the mechanical response of single liposomes by AFM nano-
indentation. Analyzing the total distance of breaks in force-indentation curves we were able to determine the degree
of lamellarity (1-5) of individual vesicles. This allowed us to characterize the influence of multilamellarity on
morphological and mechanical properties. We found that MLVs, upon adhesion with a surface, stay in a more
spherical shape respect to ULVs. Furthermore, the stiffness increases linearly with the addition of each lipid bilayer
(0.0027 N/m added stiffness). We speculate that the added osmotic pressure, due to the inner and less-deformed
vesicles, together with their bending, cause the observed stiffening. These results suggest that small MLVs might
have beneficial properties for cellular uptake.
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organization and  function  while
minimizing the effect of prifiting on cell
viability and without compromising
printing fidelity and stability of the
construct.

Many bioinks have been formulated for
various cells types, but those currently used
for 3D printing still have challenges and
limitations, mainly low cell viability during
printing and limited resolution and fidelity.

To overcome these limitations, we
developed a new concept of extrusion-based
bioprinting technique, which implements a
microfluidic control in the dispensation of
the bioink. The coupling of microfluidic
platforms with the dispensing system is
made possible by the use of a coaxial
extrusion  head  that  induces  the
solidification of the bioink in the form of a
hydrogel simultaneously to its deposition.

In particular, among other components, the
bioink contains alginate, whose gelation is
induced by exposing it to a crosslinking
solution containing calcium ions. The bioink
and the crosslinking solution are delivered
respectively  through the internal and

external needles of a coaxial-needles system.

At the ending tip of the dispensing head the
two solutions meet causing the immediate
solidification of the bioink due to the ionic
crosslinking of alginate. In this way, it is
possible to deposit hydrogel fibers with
dimensions ranging between 150 and 300
um. The printing conditions described
above are mild since bioink viscosity is low
and crosslinking conditions can be tuned to

be harmless toward encapsulated cells.
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Figurel Examples of bioprinted

constructs embedding different cell
types (from left to right): human
umbilical ~ vein  endothelial  cells
(HUVECs) embedded in a chemically
crosslinked gelatin methacrylate gel;
BM-Human Mesenchymal Stem Cells
(BM-hMSCs) embedded in a chemically
crosslinked gelatin
methacrylate-hyaluronic
methacrylate-chondroitin  methacrylate
gel; myoblasts embedded in PEGylated
fibrinogen gel.

1. C. Colosi, M. Costantini, R. Latini, S.
Ciccarelli, A. Stampella, A. Barbetta, M.
Massimi, L. Conti Devirgiliis, M.
Dentini, Journal of Material Chemistry B
2, 6779 (2014).

2. C. Colosi, S.-R. Shin, V. Manoharan, S.
Massa, M. Costantini, A. Barbetta, M. R.
Dokmeci, M. Dentini, A.
Khademhosseini, Advanced Materials
28,677 (2016).

3. M. Costantini, J. Idaszek, K. Szoke, J.
Jaroszewicz, M. Dentini, A. Barbetta, J.
E. Brinchmann, W. §wi¢szkowski
Biofabrication, 8, 035002, (2016).

P-01: Quasiperiodicity and mirror
symmetry in photonic devices
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The wave propagation through a dielectric
medium has been shown to be very sensitive
to its structure at wavelength scale [1]. In
consequence, photonic devices based on
the
sequence are

dielectric layers ordered following

periodic or quasiperiodic
capable of reflecting, confining, guiding or
filtering lights, just as electrons and holes in
electronic devices [2]. In this work, we
report a comparative study of the light

transmission in dielectric heterostructures

with Fibonacci, Thue-Morse,
Rudin-Shapiro,  Triadic =~ Cantor  and
Period-doubling sequences [1,3].

Furthermore, heterostructures with mirror
symmetry can be obtained by concatenating
an aperiodic multilayer to its mirror
structure or conjugate one. For example, the
sequence of a mirror Fibonacci multilayer
can be written as ABAAB-BAABA, while a

conjugate one as ABAAB-BABBA. Within

30

the
optical thickness of each layer is A/4, we

the quarter-wave condition, where
observe a perfect transmission sharp peak at
A for multilayers with mirror symmetry. The
full width at half maximum (FWHM) of this
peak is investigated in detail for analyzed
periodic and aperiodic multilayers with
mirror symmetry, keeping constant the total
number of layers and the refraction-index
ratio of layers A and B. In addition, we
investigate the variation of transmittance
spectra with the incident angle for both
transversal electric (TE) and transversal
magnetic (TM) polarizations. Finally, the
results of this study show the decisive
importance of heterostructural order in the
design and fabrication of photonic devices.

This work has been partially supported by
UNAM-PAPIIT-IN114916.  Computations
were performed at Miztli of DGTIC-UNAM

1. E. Macid, Rep. Prog. Phys. 75, 036502
(2012).

2. J. D. Joannopoulos, S. G. Johnson, J. N.
Winn, and R. D. Meade, Photonic
Crystals: Molding the Flow of Light, 2™
Ed. (Princeton University Press, 2008).

3. A. Palavicini and C. Wang, Optics and
Photonics Journal 3, 20 (2013).
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Resonant AC and optical absorption spectra of aperiodic
branched nanowires
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The electronic transport induced by oscillating electromagnetic field in non-crystalline
nanostructures is still an unclear issue, where the interference between the electronic
wavefunction and aperiodic potentials has multiple consequences. Recently, branched
nanowires with tunable three-dimensional (3D) morphology have been obtained, and they
have wide applications in energy conversion and storage devices [1]. Nonlinear electrical
properties of branched nanowires have also been reported [2]. In general, the aperiodic
arrangement of branches avoids the use of the reciprocal space and then, such systems
should be addressed in the real space. In this work, a renormalization plus convolution
method developed for the Kubo-Greenwood formula [3] is used to investigate the
electronic transport in branched nanowires. We report a three order-of-magnitude
enhancement in comparison to the ballistic alternating current (AC) conductivity, when
periodic or quasiperiodically placed branches are introduced to an otherwise periodic
nanowire, which are connected to two semi-infinite periodic leads at its ends [4].
Moreover, the temperature variation analysis suggests the possibility to observe these
resonant AC conducting peaks at room temperature. Given that the imaginary part of the
dielectric function is proportional to the AC conductivity, we further calculate the optical
absorption in these aperiodic branched nanowires, finding significant improvements in
their absorption spectra at infrared range, useful for the solar cell applications.

This work has been partially supported by UNAM-IN114916. Computations were
performed at Miztli of DGCTIC, UNAM.

[1] C. Cheng and H.J. Fan, Nano Today 7, 327 (2012).

[2] D.B. Suyatin, J. Sun, A. Fuhrer, D. Wallin, L.E. Fréberg, L.S. Karlsson, I. Maximov,
L.R. Wallenberg, L. Samuelson and H.Q. Xu, Nano Lett. 8, 1100 (2008).

[3] V. Sanchez and C. Wang, Phys. Rev. B 70, 144207 (2004).

[4] V. Sanchez and C. Wang, Phil. Mag. 95, 326 (2015).
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